Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Neural Networks with Keras Cookbook
  • Table Of Contents Toc
Neural Networks with Keras Cookbook

Neural Networks with Keras Cookbook

By : V Kishore Ayyadevara
3.3 (8)
close
close
Neural Networks with Keras Cookbook

Neural Networks with Keras Cookbook

3.3 (8)
By: V Kishore Ayyadevara

Overview of this book

This book will take you from the basics of neural networks to advanced implementations of architectures using a recipe-based approach. We will learn about how neural networks work and the impact of various hyper parameters on a network's accuracy along with leveraging neural networks for structured and unstructured data. Later, we will learn how to classify and detect objects in images. We will also learn to use transfer learning for multiple applications, including a self-driving car using Convolutional Neural Networks. We will generate images while leveraging GANs and also by performing image encoding. Additionally, we will perform text analysis using word vector based techniques. Later, we will use Recurrent Neural Networks and LSTM to implement chatbot and Machine Translation systems. Finally, you will learn about transcribing images, audio, and generating captions and also use Deep Q-learning to build an agent that plays Space Invaders game. By the end of this book, you will have developed the skills to choose and customize multiple neural network architectures for various deep learning problems you might encounter.
Table of Contents (18 chapters)
close
close

Building a Deep Feedforward Neural Network

In this chapter, we will cover the following recipes:

  • Training a vanilla neural network
  • Scaling the input dataset
  • Impact of training when the majority of inputs are greater than zero
  • Impact of batch size on model accuracy
  • Building a deep neural network to improve network accuracy
  • Varying the learning rate to improve network accuracy
  • Varying the loss optimizer to improve network accuracy
  • Understanding the scenario of overfitting
  • Speeding up the training process using batch normalization

In the previous chapter, we looked at the basics of the function of a neural network. We also learned that there are various hyperparameters that impact the accuracy of a neural network. In this chapter, we will get into the details of the functions of the various hyperparameters within a neural network.

All the codes for this chapter are available at...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Neural Networks with Keras Cookbook
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon