Book Image

Hands-On Deep Learning for IoT

By : Dr. Mohammad Abdur Razzaque, Md. Rezaul Karim
Book Image

Hands-On Deep Learning for IoT

By: Dr. Mohammad Abdur Razzaque, Md. Rezaul Karim

Overview of this book

Artificial Intelligence is growing quickly, which is driven by advancements in neural networks(NN) and deep learning (DL). With an increase in investments in smart cities, smart healthcare, and industrial Internet of Things (IoT), commercialization of IoT will soon be at peak in which massive amounts of data generated by IoT devices need to be processed at scale. Hands-On Deep Learning for IoT will provide deeper insights into IoT data, which will start by introducing how DL fits into the context of making IoT applications smarter. It then covers how to build deep architectures using TensorFlow, Keras, and Chainer for IoT. You’ll learn how to train convolutional neural networks(CNN) to develop applications for image-based road faults detection and smart garbage separation, followed by implementing voice-initiated smart light control and home access mechanisms powered by recurrent neural networks(RNN). You’ll master IoT applications for indoor localization, predictive maintenance, and locating equipment in a large hospital using autoencoders, DeepFi, and LSTM networks. Furthermore, you’ll learn IoT application development for healthcare with IoT security enhanced. By the end of this book, you will have sufficient knowledge need to use deep learning efficiently to power your IoT-based applications for smarter decision making.
Table of Contents (15 chapters)
Free Chapter
1
Section 1: IoT Ecosystems, Deep Learning Techniques, and Frameworks
4
Section 2: Hands-On Deep Learning Application Development for IoT
10
Section 3: Advanced Aspects and Analytics in IoT

Data exploration

In this section, we will examine in more detail the datasets that we will be using:

  • HAR dataset: The dataset is a text file that consists of the different subjects accelerations for each of the six activities. We can do a data distribution check for the dataset as it is not easy to perceive the data distribution by looking at the text file only. The following graph summarizes the breakdown for the training set:

As we can see from the preceding graph, the training dataset consists of more walking and jogging data than the other four activities. This is good for the DL model, since walking and jogging are moving activities, where the range of acceleration data could be wide. To visualize this, we have explored activity-wise acceleration measurements/data for 200 time steps for each activity. The following screenshot represents 200 time step acceleration measurements...