Book Image

Hands-On Machine Learning with ML.NET

By : Jarred Capellman
Book Image

Hands-On Machine Learning with ML.NET

By: Jarred Capellman

Overview of this book

Machine learning (ML) is widely used in many industries such as science, healthcare, and research and its popularity is only growing. In March 2018, Microsoft introduced ML.NET to help .NET enthusiasts in working with ML. With this book, you’ll explore how to build ML.NET applications with the various ML models available using C# code. The book starts by giving you an overview of ML and the types of ML algorithms used, along with covering what ML.NET is and why you need it to build ML apps. You’ll then explore the ML.NET framework, its components, and APIs. The book will serve as a practical guide to helping you build smart apps using the ML.NET library. You’ll gradually become well versed in how to implement ML algorithms such as regression, classification, and clustering with real-world examples and datasets. Each chapter will cover the practical implementation, showing you how to implement ML within .NET applications. You’ll also learn to integrate TensorFlow in ML.NET applications. Later you’ll discover how to store the regression model housing price prediction result to the database and display the real-time predicted results from the database on your web application using ASP.NET Core Blazor and SignalR. By the end of this book, you’ll have learned how to confidently perform basic to advanced-level machine learning tasks in ML.NET.
Table of Contents (19 chapters)
1
Section 1: Fundamentals of Machine Learning and ML.NET
4
Section 2: ML.NET Models
10
Section 3: Real-World Integrations with ML.NET
14
Section 4: Extending ML.NET

Evaluating the model

As you saw when running the trainer component of the sample project, there are various elements of model evaluation. For each model type, there are different metrics to look at when analyzing the performance of a model.

In binary classification models like the one found in the example project, the following properties are exposed in CalibratedBiniaryClassificationMetrics that we set after calling the Evaluate method. However, first, we need to define the four prediction types in a binary classification:

  • True negative: Properly classified as negative
  • True positive: Properly classified as positive
  • False negative: Improperly classified as negative
  • False positive: Improperly classified as positive

The first metric to understand is Accuracy. As the name implies, accuracy is one of the most commonly used metrics when evaluating a model. This metric is calculated simply as the ratio of correctly classified predictions to total classifications.

The next metric to understand...