Book Image

Interactive Data Visualization with Python - Second Edition

By : Abha Belorkar, Sharath Chandra Guntuku, Shubhangi Hora, Anshu Kumar
Book Image

Interactive Data Visualization with Python - Second Edition

By: Abha Belorkar, Sharath Chandra Guntuku, Shubhangi Hora, Anshu Kumar

Overview of this book

With so much data being continuously generated, developers, who can present data as impactful and interesting visualizations, are always in demand. Interactive Data Visualization with Python sharpens your data exploration skills, tells you everything there is to know about interactive data visualization in Python. You'll begin by learning how to draw various plots with Matplotlib and Seaborn, the non-interactive data visualization libraries. You'll study different types of visualizations, compare them, and find out how to select a particular type of visualization to suit your requirements. After you get a hang of the various non-interactive visualization libraries, you'll learn the principles of intuitive and persuasive data visualization, and use Bokeh and Plotly to transform your visuals into strong stories. You'll also gain insight into how interactive data and model visualization can optimize the performance of a regression model. By the end of the course, you'll have a new skill set that'll make you the go-to person for transforming data visualizations into engaging and interesting stories.
Table of Contents (9 chapters)

2. Static Visualization – Global Patterns and Summary Statistics

Learning Objectives

By the end of this chapter, you will be able to:

  • Explain various visualization techniques for different contexts
  • Identify global patterns of one or more features in a dataset
  • Create plots to represent global patterns in data: scatter plots, hexbin plots, contour plots, and heatmaps
  • Create plots that present summary statistics of data: histograms (revisited), box plots, and violin plots

In this chapter, we'll explore different visualization techniques for presenting global patterns and summary statistics of data.