Book Image

Transformers for Natural Language Processing

By : Denis Rothman
Book Image

Transformers for Natural Language Processing

By: Denis Rothman

Overview of this book

The transformer architecture has proved to be revolutionary in outperforming the classical RNN and CNN models in use today. With an apply-as-you-learn approach, Transformers for Natural Language Processing investigates in vast detail the deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question answering, and many more NLP domains with transformers. The book takes you through NLP with Python and examines various eminent models and datasets within the transformer architecture created by pioneers such as Google, Facebook, Microsoft, OpenAI, and Hugging Face. The book trains you in three stages. The first stage introduces you to transformer architectures, starting with the original transformer, before moving on to RoBERTa, BERT, and DistilBERT models. You will discover training methods for smaller transformers that can outperform GPT-3 in some cases. In the second stage, you will apply transformers for Natural Language Understanding (NLU) and Natural Language Generation (NLG). Finally, the third stage will help you grasp advanced language understanding techniques such as optimizing social network datasets and fake news identification. By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models by tech giants to various datasets.
Table of Contents (16 chapters)
Other Books You May Enjoy

Pretraining a RoBERTa Model from Scratch

In this chapter, we will build a RoBERTa model from scratch. The model will take the bricks of the Transformer construction kit we need for BERT models. Also, no pretrained tokenizers or models will be used. The RoBERTa model will be built following the fifteen-step process described in this chapter.

We will use the knowledge of transformers acquired in the previous chapters to build a model that can perform language modeling on masked tokens step by step. In Chapter 1, Getting Started with the Model Architecture of the Transformer, we went through the building blocks of the original Transformer. In Chapter 2, Fine-Tuning BERT Models, we fine-tuned a pretrained BERT model.

This chapter will focus on building a pretrained transformer model from scratch using a Jupyter notebook based on Hugging Face's seamless modules. The model is named KantaiBERT.

KantaiBERT first loads a compilation of Immanuel Kant books created for...