Book Image

Feature Store for Machine Learning

By : Jayanth Kumar M J
Book Image

Feature Store for Machine Learning

By: Jayanth Kumar M J

Overview of this book

Feature store is one of the storage layers in machine learning (ML) operations, where data scientists and ML engineers can store transformed and curated features for ML models. This makes them available for model training, inference (batch and online), and reuse in other ML pipelines. Knowing how to utilize feature stores to their fullest potential can save you a lot of time and effort, and this book will teach you everything you need to know to get started. Feature Store for Machine Learning is for data scientists who want to learn how to use feature stores to share and reuse each other's work and expertise. You’ll be able to implement practices that help in eliminating reprocessing of data, providing model-reproducible capabilities, and reducing duplication of work, thus improving the time to production of the ML model. While this ML book offers some theoretical groundwork for developers who are just getting to grips with feature stores, there's plenty of practical know-how for those ready to put their knowledge to work. With a hands-on approach to implementation and associated methodologies, you'll get up and running in no time. By the end of this book, you’ll have understood why feature stores are essential and how to use them in your ML projects, both on your local system and on the cloud.
Table of Contents (13 chapters)
1
Section 1 – Why Do We Need a Feature Store?
4
Section 2 – A Feature Store in Action
9
Section 3 – Alternatives, Best Practices, and a Use Case

Feast initialization for AWS

We have the infrastructure required for running Feast now. However, we need to initialize a Feast project before we can start using it. To initialize a Feast project, we need to install the Feast library as we did in Chapter 3, Feature Store Fundamentals, Terminology, and Usage. However, this time, we also need to install the AWS dependencies. Here is the link to the notebook: https://github.com/PacktPublishing/Feature-Store-for-Machine-Learning/blob/main/Chapter04/ch4_Feast_aws_initialization.ipynb.

The following command installs Feast with the required AWS dependencies:

!pip install feast[aws]

Once the dependencies are installed, we need to initialize the Feast project. Unlike the initialization we did in the last chapter, here, Feast initialization needs additional inputs such as Redshift ARN, database name, S3 path, and so on. Let's look at how the initialization differs here. Before we initialize the project, we need the following details...