Book Image

Mastering Blockchain - Fourth Edition

By : Imran Bashir
5 (3)
Book Image

Mastering Blockchain - Fourth Edition

5 (3)
By: Imran Bashir

Overview of this book

Blockchain is the backbone of cryptocurrencies, it has had a massive impact in many sectors, including finance, supply chains, healthcare, government, and media. It’s also being used for cutting edge technologies such as AI and IoT. This new edition is thoroughly revised to offer a practical approach to using Ethereum, Hyperledger, Fabric, and Corda with step-by-step tutorials and real-world use-cases to help you understand everything you need to know about blockchain development and implementation. With new chapters on Decentralized Finance and solving privacy, identity, and security issues, as well as bonus online content exploring alternative blockchains, this is an unmissable read for everyone who wants to gain a deep understanding of blockchain. The book doesn’t shy away from advanced topics and practical expertise, such as decentralized application (DApp) development using smart contracts and oracles, and emerging trends in the blockchain space. Throughout the book, you’ll explore blockchain solutions beyond cryptocurrencies, such as the IoT with blockchain, enterprise blockchains, and tokenization, and gain insight into the future scope of this fascinating and disruptive technology. By the end of this blockchain book, you will have gained a thorough comprehension of the various facets of blockchain and understand the potential of this technology in diverse real-world scenarios.
Table of Contents (24 chapters)
23
Index

Asymmetric cryptography

Asymmetric cryptography refers to a type of cryptography where the key that is used to encrypt the data is different from the key that is used to decrypt the data. These keys are called private and public keys, respectively, which is why asymmetric cryptography is also known as public key cryptography. It uses both public and private keys to encrypt and decrypt data, respectively. Various asymmetric cryptography schemes are in use, including RSA and ElGamal encryption.

A generic depiction of public-key cryptography is shown in the following diagram:

Figure 4.1: Encryption/decryption using public/private keys

The preceding diagram illustrates how a sender encrypts data P using the recipient's public key and encryption function, and produces an output encrypted data C, which is then transmitted over the network to the receiver. Once it reaches the receiver, it can be decrypted using the receiver's private key by feeding the C encrypted data into decryption...