Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying The Deep Learning Architect's Handbook
  • Table Of Contents Toc
The Deep Learning Architect's Handbook

The Deep Learning Architect's Handbook

By : Ee Kin Chin
4.8 (9)
close
close
The Deep Learning Architect's Handbook

The Deep Learning Architect's Handbook

4.8 (9)
By: Ee Kin Chin

Overview of this book

Deep learning enables previously unattainable feats in automation, but extracting real-world business value from it is a daunting task. This book will teach you how to build complex deep learning models and gain intuition for structuring your data to accomplish your deep learning objectives. This deep learning book explores every aspect of the deep learning life cycle, from planning and data preparation to model deployment and governance, using real-world scenarios that will take you through creating, deploying, and managing advanced solutions. You’ll also learn how to work with image, audio, text, and video data using deep learning architectures, as well as optimize and evaluate your deep learning models objectively to address issues such as bias, fairness, adversarial attacks, and model transparency. As you progress, you’ll harness the power of AI platforms to streamline the deep learning life cycle and leverage Python libraries and frameworks such as PyTorch, ONNX, Catalyst, MLFlow, Captum, Nvidia Triton, Prometheus, and Grafana to execute efficient deep learning architectures, optimize model performance, and streamline the deployment processes. You’ll also discover the transformative potential of large language models (LLMs) for a wide array of applications. By the end of this book, you'll have mastered deep learning techniques to unlock its full potential for your endeavors.
Table of Contents (25 chapters)
close
close
1
Part 1 – Foundational Methods
11
Part 2 – Multimodal Model Insights
17
Part 3 – DLOps

Understanding Recurrent Neural Networks

A recurrent neural network (RNN) is a neural network that is made to process sequential data while being aware of the sequence of the data. Sequential data can involve time series based data and data that has a sequence but does not have a time component, such as text data. The applications of such a neural network are built upon the nature of the data itself. For time-series data, this can be either for nowcasting (predictions made for the current time with both past and present data) or forecasting targets. For text data, applications such as speech recognition and machine translation can utilize these neural networks.

Research in recurrent neural networks has slowed in the past few years with the advent of neural networks that can capture sequential data while removing recursive connections completely and achieving better performance, such as transformers. However, RNNs are still used extensively in the real world today to serve as a good...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
The Deep Learning Architect's Handbook
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon