Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying The Deep Learning Architect's Handbook
  • Table Of Contents Toc
The Deep Learning Architect's Handbook

The Deep Learning Architect's Handbook

By : Ee Kin Chin
4.8 (9)
close
close
The Deep Learning Architect's Handbook

The Deep Learning Architect's Handbook

4.8 (9)
By: Ee Kin Chin

Overview of this book

Deep learning enables previously unattainable feats in automation, but extracting real-world business value from it is a daunting task. This book will teach you how to build complex deep learning models and gain intuition for structuring your data to accomplish your deep learning objectives. This deep learning book explores every aspect of the deep learning life cycle, from planning and data preparation to model deployment and governance, using real-world scenarios that will take you through creating, deploying, and managing advanced solutions. You’ll also learn how to work with image, audio, text, and video data using deep learning architectures, as well as optimize and evaluate your deep learning models objectively to address issues such as bias, fairness, adversarial attacks, and model transparency. As you progress, you’ll harness the power of AI platforms to streamline the deep learning life cycle and leverage Python libraries and frameworks such as PyTorch, ONNX, Catalyst, MLFlow, Captum, Nvidia Triton, Prometheus, and Grafana to execute efficient deep learning architectures, optimize model performance, and streamline the deployment processes. You’ll also discover the transformative potential of large language models (LLMs) for a wide array of applications. By the end of this book, you'll have mastered deep learning techniques to unlock its full potential for your endeavors.
Table of Contents (25 chapters)
close
close
1
Part 1 – Foundational Methods
11
Part 2 – Multimodal Model Insights
17
Part 3 – DLOps

Preface

As a deep learning practitioner and enthusiast, I have spent years working on various projects and learning from diverse sources such as Kaggle, GitHub, colleagues, and real-life use cases. I've realized that there is a significant gap in the availability of cohesive, end-to-end deep learning resources. Traditional Massively Open Online Courses (MOOC), while helpful, often lack the practical knowledge and real-world insights that can only be gained through hands-on experience.

To bridge this gap, I've created The Deep Learning Architect Handbook, a comprehensive and practical guide that combines my unique experiences and insights. This book will help you navigate the complex landscape of deep learning, providing you with the knowledge and insights that would typically take years of hands-on experience to acquire, condensed into a resource that can be consumed in just days or weeks.

This book delves into various stages of the deep learning life cycle, from planning and data preparation to model deployment and governance. Throughout this journey, you'll encounter both foundational and advanced deep learning architectures, such as Multi-Layer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), autoencoders, transformers, and cutting-edge methods, such as Neural Architecture Search (NAS). Divided into three parts, this book covers foundational methods, model insights, and DLOps, exploring advanced topics such as NAS, adversarial performance, and Large Language Model (LLM) solutions. By the end of this book, you will be well-prepared to design, develop, and deploy effective deep learning solutions, unlocking their full potential and driving innovation across various applications.

I hope that this book will serve as a way for me to give back to the community, by sparking conversations, challenging assumptions, and inspiring new ideas and approaches in the field of deep learning. I invite you to join me on this journey, and I look forward to hearing your thoughts and feedback as we explore the captivating world of deep learning together. Please feel free to reach out to me via LinkedIn through www.linkedin.com/in/chineekin, Kaggle through https://www.kaggle.com/dicksonchin93, or other channels listed on my LinkedIn profile. Your unique experiences and perspectives will undoubtedly contribute to the ongoing evolution of this book and the deep learning community as a whole.

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
The Deep Learning Architect's Handbook
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon