Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Simulation Modeling with Python
  • Table Of Contents Toc
Hands-On Simulation Modeling with Python

Hands-On Simulation Modeling with Python - Second Edition

By : Giuseppe Ciaburro
4.8 (12)
close
close
Hands-On Simulation Modeling with Python

Hands-On Simulation Modeling with Python

4.8 (12)
By: Giuseppe Ciaburro

Overview of this book

Simulation modelling is an exploration method that aims to imitate physical systems in a virtual environment and retrieve useful statistical inferences from it. The ability to analyze the model as it runs sets simulation modelling apart from other methods used in conventional analyses. This book is your comprehensive and hands-on guide to understanding various computational statistical simulations using Python. The book begins by helping you get familiarized with the fundamental concepts of simulation modelling, that’ll enable you to understand the various methods and techniques needed to explore complex topics. Data scientists working with simulation models will be able to put their knowledge to work with this practical guide. As you advance, you’ll dive deep into numerical simulation algorithms, including an overview of relevant applications, with the help of real-world use cases and practical examples. You'll also find out how to use Python to develop simulation models and how to use several Python packages. Finally, you’ll get to grips with various numerical simulation algorithms and concepts, such as Markov Decision Processes, Monte Carlo methods, and bootstrapping techniques. By the end of this book, you'll have learned how to construct and deploy simulation models of your own to overcome real-world challenges.
Table of Contents (19 chapters)
close
close
1
Part 1:Getting Started with Numerical Simulation
5
Part 2:Simulation Modeling Algorithms and Techniques
11
Part 3:Simulation Applications to Solve Real-World Problems

Summary

In this chapter, we learned how to define stochastic processes and understood the importance of using them to address numerous real-world problems. For instance, the operation of slot machines is based on the generation of random numbers, as are many complex data encryption procedures. Next, we introduced the concepts behind random number generation techniques. We explored the main methods of generating random numbers using practical examples in Python code. The generation of uniform and generic distributions was discussed. We also learned how to perform a uniformity test using the chi-squared method. Then, we looked at the main functions available in Python for generating random numbers: random, seed, uniform, randint, choice, and sample. Finally, we explored the randomness requirements for security systems, and we analyzed an encrypted/decrypted message generator.

In the next chapter, we will learn about the basic concepts of probability theory. Additionally, we will learn...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Hands-On Simulation Modeling with Python
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon