Book Image

The Machine Learning Solutions Architect Handbook - Second Edition

By : David Ping
5 (1)
Book Image

The Machine Learning Solutions Architect Handbook - Second Edition

5 (1)
By: David Ping

Overview of this book

David Ping, Head of GenAI and ML Solution Architecture for global industries at AWS, provides expert insights and practical examples to help you become a proficient ML solutions architect, linking technical architecture to business-related skills. You'll learn about ML algorithms, cloud infrastructure, system design, MLOps , and how to apply ML to solve real-world business problems. David explains the generative AI project lifecycle and examines Retrieval Augmented Generation (RAG), an effective architecture pattern for generative AI applications. You’ll also learn about open-source technologies, such as Kubernetes/Kubeflow, for building a data science environment and ML pipelines before building an enterprise ML architecture using AWS. As well as ML risk management and the different stages of AI/ML adoption, the biggest new addition to the handbook is the deep exploration of generative AI. By the end of this book , you’ll have gained a comprehensive understanding of AI/ML across all key aspects, including business use cases, data science, real-world solution architecture, risk management, and governance. You’ll possess the skills to design and construct ML solutions that effectively cater to common use cases and follow established ML architecture patterns, enabling you to excel as a true professional in the field.
Table of Contents (19 chapters)
17
Other Books You May Enjoy
18
Index

ML challenges

Over the years, I have worked on many real-world problems using ML solutions and encountered different challenges faced by different industries during ML adoptions.

I often get the same question when working on ML projects: We have a lot of data – can you help us figure out what insights we can generate using ML? I refer to companies with this question as having a business use case challenge. Not being able to identify business use cases for ML is a very big hurdle for many companies. Without a properly identified business problem and its value proposition and benefit, it becomes difficult to initiate an ML project.

In my conversations with different companies across their industries, data-related challenges emerge as a frequent issue. This includes data quality, data inventory, data accessibility, data governance, and data availability. This problem affects both data-poor and data-rich companies and is often exacerbated by data silos, data security, and industry regulations.

The shortage of data science and ML talent is another major challenge I have heard from many companies. Companies, in general, are having a tough time attracting and retaining top ML talents, which is a common problem across all industries. As ML platforms become more complex and the scope of ML projects increases, the need for other ML-related functions starts to surface. Nowadays, in addition to just data scientists, an organization would also need functional roles for ML product management, ML infrastructure engineering, and ML operations management.

Based on my experiences, I have observed that cultural acceptance of ML-based solutions is another significant challenge for broad adoption. There are individuals who perceive ML as a threat to their job functions, and their lack of knowledge in ML makes them hesitant to adopt these new methods in their business workflows.

The practice of ML solutions architecture aims to help solve some of the challenges in ML. In the next section, we will explore ML solutions architecture and its role in the ML lifecycle.