Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Machine Learning By Example
  • Table Of Contents Toc
  • Feedback & Rating feedback
Python Machine Learning By Example

Python Machine Learning By Example - Fourth Edition

By : Yuxi (Hayden) Liu
4.9 (8)
close
close
Python Machine Learning By Example

Python Machine Learning By Example

4.9 (8)
By: Yuxi (Hayden) Liu

Overview of this book

The fourth edition of Python Machine Learning By Example is a comprehensive guide for beginners and experienced machine learning practitioners who want to learn more advanced techniques, such as multimodal modeling. Written by experienced machine learning author and ex-Google machine learning engineer Yuxi (Hayden) Liu, this edition emphasizes best practices, providing invaluable insights for machine learning engineers, data scientists, and analysts. Explore advanced techniques, including two new chapters on natural language processing transformers with BERT and GPT, and multimodal computer vision models with PyTorch and Hugging Face. You’ll learn key modeling techniques using practical examples, such as predicting stock prices and creating an image search engine. This hands-on machine learning book navigates through complex challenges, bridging the gap between theoretical understanding and practical application. Elevate your machine learning and deep learning expertise, tackle intricate problems, and unlock the potential of advanced techniques in machine learning with this authoritative guide.
Table of Contents (18 chapters)
close
close
16
Other Books You May Enjoy
17
Index

Introducing sequential learning

The machine learning problems we have solved so far in this book have been time independent. For example, ad click-through doesn’t depend on the user’s historical ad clicks under our previous approach; in face classification, the model only takes in the current face image, not previous ones. However, there are many cases in life that depend on time. For example, in financial fraud detection, we can’t just look at the present transaction; we should also consider previous transactions so that we can model based on their discrepancy. Another example is Part-of-Speech (PoS) tagging, where we assign a PoS (verb, noun, adverb, and so on) to a word. Instead of solely focusing on the given word, we must look at some previous words, and sometimes the next words too.

In time-dependent cases like those just mentioned, the current output is dependent on not only the current input but also the previous inputs; note that the length of the...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Python Machine Learning By Example
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon