Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Building AI Agents with LLMs, RAG, and Knowledge Graphs
  • Table Of Contents Toc
Building AI Agents with LLMs, RAG, and Knowledge Graphs

Building AI Agents with LLMs, RAG, and Knowledge Graphs

By : Salvatore Raieli, Gabriele Iuculano
4 (5)
close
close
Building AI Agents with LLMs, RAG, and Knowledge Graphs

Building AI Agents with LLMs, RAG, and Knowledge Graphs

4 (5)
By: Salvatore Raieli, Gabriele Iuculano

Overview of this book

This book addresses the challenge of building AI that not only generates text but also grounds its responses in real data and takes action. Authored by AI specialists with expertise in drug discovery and systems optimization, this guide empowers you to leverage retrieval-augmented generation (RAG), knowledge graphs, and agent-based architectures to engineer truly intelligent behavior. By combining large language models (LLMs) with up-to-date information retrieval and structured knowledge, you'll create AI agents capable of deeper reasoning and more reliable problem-solving. Inside, you'll find a practical roadmap from concept to implementation. You’ll discover how to connect language models with external data via RAG pipelines for increasing factual accuracy and incorporate knowledge graphs for context-rich reasoning. The chapters will help you build and orchestrate autonomous agents that combine planning, tool use, and knowledge retrieval to achieve complex goals. Concrete Python examples and real-world case studies reinforce each concept and show how the techniques fit together. By the end of this book, you’ll be able to build intelligent AI agents that reason, retrieve, and interact dynamically, empowering you to deploy powerful AI solutions across industries. *Email sign-up and proof of purchase required
Table of Contents (17 chapters)
close
close
Lock Free Chapter
1
Part 1: The AI Agent Engine: From Text to Large Language Models
5
Part 2: AI Agents and Retrieval of Knowledge
11
Part 3: Creating Sophisticated AI to Solve Complex Scenarios

Creating and Connecting a Knowledge Graph to an AI Agent

In the previous two chapters, we discussed the RAG framework in detail. We started with naïve RAG and then saw how we could add different components, replace others, or modify the entire pipeline for our needs. The whole system is extremely flexible, but some concepts remain the same. First, we start with a corpus (or multiple corpora of texts) and conduct embedding of these texts to obtain a database of vectors. Once the user query arrives, we conduct a similarity search on this database of vectors. Regardless of the scope or type of texts, our pipeline is based on the concept of vectorizing these texts in some way and then providing the information contained in the discovered texts to the LLM.

Texts are often full of redundant information, and in the previous chapter, we saw that LLMs are sensitive to the amount of noise in the input. Most people have seen the benefit of creating schematic notes or mind maps. These...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Building AI Agents with LLMs, RAG, and Knowledge Graphs
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon