Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Transformers
  • Table Of Contents Toc
Mastering Transformers

Mastering Transformers - Second Edition

By : Savaş Yıldırım, Meysam Asgari- Chenaghlu
5 (5)
close
close
Mastering Transformers

Mastering Transformers

5 (5)
By: Savaş Yıldırım, Meysam Asgari- Chenaghlu

Overview of this book

Transformer-based language models such as BERT, T5, GPT, DALL-E, and ChatGPT have dominated NLP studies and become a new paradigm. Thanks to their accurate and fast fine-tuning capabilities, transformer-based language models have been able to outperform traditional machine learning-based approaches for many challenging natural language understanding (NLU) problems. Aside from NLP, a fast-growing area in multimodal learning and generative AI has recently been established, showing promising results. Mastering Transformers will help you understand and implement multimodal solutions, including text-to-image. Computer vision solutions that are based on transformers are also explained in the book. You’ll get started by understanding various transformer models before learning how to train different autoregressive language models such as GPT and XLNet. The book will also get you up to speed with boosting model performance, as well as tracking model training using the TensorBoard toolkit. In the later chapters, you’ll focus on using vision transformers to solve computer vision problems. Finally, you’ll discover how to harness the power of transformers to model time series data and for predicting. By the end of this transformers book, you’ll have an understanding of transformer models and how to use them to solve challenges in NLP and CV.
Table of Contents (25 chapters)
close
close
1
Part 1: Recent Developments in the Field, Installations, and Hello World Applications
4
Part 2: Transformer Models: From Autoencoders to Autoregressive Models
12
Part 3: Advanced Topics
19
Part 4: Transformers beyond NLP

References

  • Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
  • Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
  • Pennington, J., Socher, R., and Manning, C. D. (2014, October). GloVe: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).
  • Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
  • Bengio, Y., Simard, P, and Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE transactions on neural networks, 5(2), 157-166.
  • Cho, K., et al. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
  • Kim, Y. (2014). Convolutional neural networks for sentence classification. CoRR abs/1408.5882 (2014). arXiv preprint arXiv:1408.5882.
  • Vaswani, A., et al. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.
  • Devlin, J., Chang, M. W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional Transformers for language understanding. arXiv preprint arXiv:1810.04805.
  • Alammar (2022). The Illustrated stable diffusion. https://jalammar.github.io/illustrated-stable-diffusion/
  • Zhong, Y., et al. (2022). Regionclip: Region-based language-image pretraining. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 16793-16803).
  • Dosovitskiy, A., et al. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
  • Radford, A., et al. (2021, July). Learning transferable visual models from natural language supervision. In International Conference on Machine Learning (pp. 8748-8763). PMLR.
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering Transformers
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon