Book Image

Hands-On Image Generation with TensorFlow

By : Soon Yau Cheong
Book Image

Hands-On Image Generation with TensorFlow

By: Soon Yau Cheong

Overview of this book

The emerging field of Generative Adversarial Networks (GANs) has made it possible to generate indistinguishable images from existing datasets. With this hands-on book, you’ll not only develop image generation skills but also gain a solid understanding of the underlying principles. Starting with an introduction to the fundamentals of image generation using TensorFlow, this book covers Variational Autoencoders (VAEs) and GANs. You’ll discover how to build models for different applications as you get to grips with performing face swaps using deepfakes, neural style transfer, image-to-image translation, turning simple images into photorealistic images, and much more. You’ll also understand how and why to construct state-of-the-art deep neural networks using advanced techniques such as spectral normalization and self-attention layer before working with advanced models for face generation and editing. You'll also be introduced to photo restoration, text-to-image synthesis, video retargeting, and neural rendering. Throughout the book, you’ll learn to implement models from scratch in TensorFlow 2.x, including PixelCNN, VAE, DCGAN, WGAN, pix2pix, CycleGAN, StyleGAN, GauGAN, and BigGAN. By the end of this book, you'll be well versed in TensorFlow and be able to implement image generative technologies confidently.
Table of Contents (15 chapters)
1
Section 1: Fundamentals of Image Generation with TensorFlow
5
Section 2: Applications of Deep Generative Models
9
Section 3: Advanced Deep Generative Techniques

Chapter 9: Video Synthesis

We have learned about and built many models for image generation, including state-of-the-art StyleGAN and Self-Attention GAN (SAGAN) models, in previous chapters. You have now learned about most if not all of the important techniques used to generate images, and we can now move on to video generation (synthesis). In essence, video is simply a series of still images. Therefore, the most basic video generation method is to generate images individually and put them together in a sequence to make a video. Video synthesis is a complex and broad topic in its own right, and we won't be able to cover everything in a single chapter.

In this chapter, we will get an overview of video synthesis. We will then implement what is probably the most well-known video generation technique, deepfake. We will use this to swap a person's face in a video with someone else's face. I'm sure you have seen such fake videos before. If you haven't, then just...