Book Image

Oracle Information Integration, Migration, and Consolidation

Book Image

Oracle Information Integration, Migration, and Consolidation

Overview of this book

The book covers data migration, data consolidation, and data integration, the three scenarios that are typically part of the information integration life cycle. Organizations typically find themselves migrating data to Oracle and either later, or at the same time, consolidating multiple database instances into a single global instance for a department, or even an entire company. The business savings and technical benefits of data consolidation cannot be overlooked, and this book will help you to use Oracle's technology to achieve these goals. This highly practical and business-applicable book will teach you to be successful with the latest Oracle data and application integration, migration, information life-cycle management, and consolidation products and technologies.In this book, you will gain hands-on advice about data consolidation, integration, and migration using tools and best practices. Along the way you will leverage products like Oracle Data Integrator, Oracle GoldenGate, and SQL Developer, as well as Data Hubs and 11gR2 Database. The book covers everything from the early background of information integration and the impact of SOA, to products like Oracle GoldenGate and Oracle Data Integrator. By the end you'll have a clear idea of where information and application integration is headed and how to plan your own projects.
Table of Contents (17 chapters)
Oracle Information Integration, Migration, and Consolidation
Credits
About The Author
About the Contributing Authors
About the Reviewers
www.PacktPub.com
Preface

Integration and SOA, bringing it together


We hear from customers over and over again about how difficult it is to add a new interface, support a new customer file, and about the amount of custom code, scripts, and JCL dedicated to simple integration solutions. The outdated proprietary methods of FTP-ing flat files, or calling CICS transactions on another mainframe are replaced by Enterprise Information Integration (EII) and Enterprise Application Integration (EAI) products that are based on standards. EII and EAI tools and technologies give you the capability to create new application interfaces in days instead of months. The following chart shows an example of a reference architecture where integration products are used to bring it all together. Here we will look at the advantages of such an end state.

Architected for the Internet

Technologies used in Legacy SOA Integration can get you on the web, but this does not mean the core of your application is built for the Internet. In an integrated solution, the architecture is built to support the Internet and SOA technologies. Your application architecture inherently includes HTTP, SOAP, web services, HTML-based reporting, business process flows, portals, and business activity monitoring. In other words, your new open-systems application is built to be truly web-enabled.

Scalability

Scalability is not all about being able to handle additional workload without significant degradation in response time. It is also about the ability to handle periodic workload changes such as end-of-year processing, sales traffic, or the retailer's experience during the holidays. Database and application server grids are the perfect match for scalability. Not only can you scale out (add more databases, application server processes, storage, and hardware), but you can also provision your workload to utilize your hardware and software based on the current environment. So for the month of December, when your retail sales are higher, more machines can be dynamically configured to handle sales transactions. When December 31 rolls around and you need to close your books for the year, your infrastructure can be changed to handle financial and accounting transactions.

Availability

Legacy systems can certainly be called reliable, but availability is a whole new subject. In the age of the Internet, clients expect your systems to be up '24/7', throughout the year. Legacy systems are typically down anywhere from two to twelve hours a night for batch processing. Much of this has to do with the lack of concurrency built into legacy databases. When the legacy applications were developed, applications were not expected to be available all day. Businesses did not operate on a global scale in what is often a 24 hour day. IT systems were architectured to match the business requirements at the time. These systems, however, do not match the business requirements of today.

With the advent of grid computing, open systems infrastructure, and the application and database software that runs on top of it are built to operate 24/7, 365 days a year. Maximum Availability Architectures are commonplace in open systems as businesses expect the system to be 'Always on'.

Greater software options

The major software vendors' product strategies are focused on relational database, SQL, Java, .NET, and open systems hardware platforms. Therefore, the entire ecosystem that exists in software development tools, database and application management tools, ISV applications, commercial of-the-shelf (COTS) applications, and hardware and storage support is in the thousands, rather than dozens or perhaps hundreds. The combination of more options, more competition, and more standards-based technologies lower the acquisition cost, support and maintenance costs, and increase customer service. It is only logical that the open market creates more choices for you at a lower cost with better service.

On-demand reporting

One of the main reasons for the proliferation of spreadsheets, Microsoft Access applications, departmental level systems, and 'the guy in accounting who took a night class on Crystal Reports' creating dozens of reports which potentially have queries that run for hours, is that in the legacy world it took way too long for the IT department to respond to new reporting and business intelligence requests. So the user community took it upon themselves to solve the problem. Departmental databases and spreadsheet-driven applications became part of the corporate fabric, and many companies rely on these systems for mission critical processing such as sales forecasting, inventory control, budgeting, and purchasing. The information is in the legacy system, but it is too difficult to get to, manipulate, and report on. With hundreds of open systems reporting, querying, data mining, and BI tools in the market place, users can access the re-architected relational database themselves. Or the IT department can easily create the reports or the BI system that the user community is asking for.

Security

Security is often seen as the domain of the legacy environment, especially in a mainframe. We hear, "My mainframe is so secure that I am never going to move off". On the other hand, we also hear of companies getting off the mainframe because there is no way to encrypt the data. Relational databases on open systems have built-in security, so IT personnel cannot access data that is not part of their daily job. They also offer transparent data encryption. Remember, most security breaches are made by your own people. This is security of data at rest. Then, there is the security of data on the network, and application-based security. This is where open system options such as network encryption, single sign-on, user ID provisioning, federated identity management, and virtual directories, all make sure open systems are more secure than your legacy environment.

Overcoming barriers to change

You can always tell the folks in the room who are just waiting for retirement and don't want the legacy system to retire before they do. Often, we can hear them say, "This can't be done, our system is way too complicated, only a mainframe can handle this workload, we have tried this before and it failed". Then you find out that they are running a 300 MIP mainframe with about one million lines of code and about two gigabytes of data. In some cases, you can handle this processing on a two node dual core processor! Or, you may find out that the system is really just a bunch of flat file interfaces that apply 300 business rules and send transactions out to third parties. This can be re-architected to a modern platform, using technologies such as Extract, Transform, and Load (ETL) that did not exist 20 years ago.

You also have to be careful when re-architecting a legacy system, as the business processes and data entry screens, as well as the people who use them, have been around for decades. You have to balance the amount of technology change with the amount of change your business community can digest. You would think that all companies would want an Internet-based web interface to a re-architected system. However, there was one occasion wherein a re-architecture System Integrator (SI) had to include a third-party screen emulation vendor that actually turned HTML into 3270 'green screens'. This was so the users could have the same look and feel, including PF keys, on the web as they did on their character-based dumb terminals.

One of the most discouraging aspects of my role as a modernization architect is that many companies re-architect legacy systems but continue to custom code application features that can be found in 'off-the-shelf' technology products. This happens often, because they don't know the new technologies properly (or even that they exist), developers still like to code, or they cannot change their mindset from 'not invented here' (meaning that we know the best way to do this).

Custom integration applications and utilities

With all the EII and EAI technologies in the market place, we still see modern-day architects decide that they can write their own integration software or write it better than a vendor who has spent years developing the solution. Initial cost (or sticker shock, some may say) is another reason. The client looks at the initial cost only, and not at the cost of maintenance, adding new interfaces, and of supporting another in-house software application. Looking at the total cost of ownership, in most cases, the advantages of using an EII or EAI product will outweigh the use of FTP and flat files, or some variant of this typical homegrown integration application.

Custom workflow

As indicated previously, workflow in legacy applications is often built into the user interface module or is implicitly part of the existing batch system. You would think companies that run legacy systems would have learned their lesson that this makes maintenance a nightmare and ends up costing large amounts of money, since changes to the legacy code or batch systems disrupt the workflow, and vice versa. These new open systems will then have the same problem that exists in legacy code today — the code cannot be changed, as no one knows what impact the change will have on processing.