Book Image

Learning Physics Modeling with PhysX

By : Krishna Kumar
Book Image

Learning Physics Modeling with PhysX

By: Krishna Kumar

Overview of this book

<p>In this day and age, physics engines play a very critical role in the success of a sophisticated game. PhysX is a state-of-the-art cross-platform physics engine widely used by top game studios and developers. It contains all the physics-related components you will need and exploits the parallel-processing capability of modern GPUs as well as multi-core CPUs to make a game as physically-realistic as possible. This book will help you to program and simulate games by using PhysX 3.</p> <p>Learning Physics Modeling with PhysX helps you to master physics simulation using the PhysX Physics Engine from scratch. This is useful not only for game developers, but also for developers making virtual walkthroughs or training and other simulation applications. It will cover all the essential features of PhysX 3 with easy-to-understand code snippets and examples to help you learn quickly and efficiently.</p> <p>This book will start off by introducing you to the basic concepts of physic engines and will give you a glimpse of PhysX implementation. We then gradually cover more sophisticated topics with sample source code so that you can see what you have learned in action. We will cover the history and features of the PhysX SDK as well as how to configure it with the C++ compiler. After touching upon essential topics like rigid body dynamics and collision detection, we will gradually move on to more advanced topics like joints, scene queries, character controllers, particles, and cloth simulation. By the end of this book, you will have learned everything you need to know about the PhysX 3 Physics Engine, and you will be able to use it to program your very own physics simulation quickly and efficiently.</p>
Table of Contents (17 chapters)
Learning Physics Modeling with PhysX
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Simulating PhysX


Simulating a PhysX program requires calculating the new position of all of the PhysX actors that are under the effect of Newton's law, for the next time frame. Simulating a PhysX program requires a time value, also known as time step, which forwards the time in the PhysX world. We use the PxScene::simulate() method to advance the time in the PhysX world. Its simplest form requires one parameter of type PxReal, which represents the time in seconds, and this should always be more than 0, of else the resulting behavior will be undefined. After this, you need to call PxScene::fetchResults(), which will allow the simulation to finish and return the result. The method requires an optional Boolean parameter, and setting this to true indicates that the simulation should wait until it is completed, so that on return the results are guaranteed to be available.

//Stepping PhysX
PxReal  myTimestep = 1.0f/60.0f;
void StepPhysX() 
{ 
  gScene->simulate(myTimestep);
  gScene->fetchResults...