Book Image

Arduino Computer Vision Programming

By : Özen Özkaya, Giray Yıllıkçı
Book Image

Arduino Computer Vision Programming

By: Özen Özkaya, Giray Yıllıkçı

Overview of this book

<p>Most technologies are developed with an inspiration of human capabilities. Most of the time, the hardest to implement capability is vision. Development of highly capable computer vision applications in an easy way requires a generic approach. In this approach, Arduino is a perfect tool for interaction with the real world. Moreover, the combination of OpenCV and Arduino boosts the level and quality of practical computer vision applications.</p> <p>Computer vision is the next level of sensing the environment. The purpose of this book is to teach you how to develop Arduino-supported computer vision systems that can interact with real life by seeing it.</p> <p>This book will combine the powers of Arduino and computer vision in a generalized, well-defined, and applicable way. The practices and approaches in the book can be used for any related problems and on any platforms. At the end of the book, you should be able to solve any types of real life vision problems with all its components by using the presented approach. Each component will extend your vision with the best practices on the topic.</p> <p>In each chapter, you will find interesting real life practical application examples about the topics in the chapter. To make it grounded, we will build a vision-enabled robot step by step towards the end of the book. You will observe that, even though the contexts of the problems are very different, the approaches to solve them are the same and very easy!</p> <p>&nbsp;</p>
Table of Contents (16 chapters)
Arduino Computer Vision Programming
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
5
Processing Vision Data with OpenCV
Index

Communicating with Java


Arduino IDE has a serial monitor which can be used to communicate with Arduino in a simple but restricted way. Many computer vision applications need automated and specialized communication architecture. Imagine that you want to run a face detection algorithm when the user presses a button. This is the doorbell button triggered face detection application which we discussed in previous chapters. In this case, the Arduino should send the button pressed information to the vision controller and the communication controller should start the face detection algorithm. You have learned how to send button press information over the serial port, but the missing part is how to understand this message and invoke the face detection algorithm in the vision controller.

Another use case is sending the output or the decision of the vision controller to the Arduino system and making the Arduino react. In the face recognition application which is triggered by the doorbell button, the...