Book Image

Hands-On Industrial Internet of Things

By : Giacomo Veneri, Antonio Capasso
Book Image

Hands-On Industrial Internet of Things

By: Giacomo Veneri, Antonio Capasso

Overview of this book

We live in an era where advanced automation is used to achieve accurate results. To set up an automation environment, you need to first configure a network that can be accessed anywhere and by any device. This book is a practical guide that helps you discover the technologies and use cases for Industrial Internet of Things (IIOT). Hands-On Industrial Internet of Things takes you through the implementation of industrial processes and specialized control devices and protocols. You’ll study the process of identifying and connecting to different industrial data sources gathered from different sensors. Furthermore, you’ll be able to connect these sensors to cloud network, such as AWS IoT, Azure IoT, Google IoT, and OEM IoT platforms, and extract data from the cloud to your devices. As you progress through the chapters, you’ll gain hands-on experience in using open source Node-Red, Kafka, Cassandra, and Python. You will also learn how to develop streaming and batch-based Machine Learning algorithms. By the end of this book, you will have mastered the features of Industry 4.0 and be able to build stronger, faster, and more reliable IoT infrastructure in your Industry.
Table of Contents (18 chapters)

Implementing analytics on AWS SageMaker

AWS SageMaker is a fully-managed service that enables data scientists to build, train, and deploy ML models at any scale. AWS SageMaker is based on Jupyter Notebook, so that developers can use a familiar user interface to build their own analytics. The basic concepts of SageMaker are the same as Azure ML. We can build our analytics on Jupyter and our training cluster through a Python API, and then deploy our model as a web app that can be consumed through a REST API. SageMaker also supports built-in algorithms to train our model. These include K-Means, K-Nearest Neighbors, Linear Learner, Neural Topic Model (NTM), Principal Component Analysis (PCA), and Random Cut Forest.

Evaluating the remaining useful life (RUL) of an engine with SageMaker

...