Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Learning Geospatial Analysis with Python
  • Table Of Contents Toc
  • Feedback & Rating feedback
Learning Geospatial Analysis with Python

Learning Geospatial Analysis with Python

By : Joel Lawhead
4.1 (8)
close
close
Learning Geospatial Analysis with Python

Learning Geospatial Analysis with Python

4.1 (8)
By: Joel Lawhead

Overview of this book

Geospatial analysis is used in almost every field you can think of from medicine, to defense, to farming. It is an approach to use statistical analysis and other informational engineering to data which has a geographical or geospatial aspect. And this typically involves applications capable of geospatial display and processing to get a compiled and useful data. "Learning Geospatial Analysis with Python" uses the expressive and powerful Python programming language to guide you through geographic information systems, remote sensing, topography, and more. It explains how to use a framework in order to approach Geospatial analysis effectively, but on your own terms. "Learning Geospatial Analysis with Python" starts with a background of the field, a survey of the techniques and technology used, and then splits the field into its component speciality areas: GIS, remote sensing, elevation data, advanced modelling, and real-time data. This book will teach you everything there is to know, from using a particular software package or API to using generic algorithms that can be applied to Geospatial analysis. This book focuses on pure Python whenever possible to minimize compiling platform-dependent binaries, so that you don't become bogged down in just getting ready to do analysis. "Learning Geospatial Analysis with Python" will round out your technical library with handy recipes and a good understanding of a field that supplements many a modern day human endeavors.
Table of Contents (12 chapters)
close
close
11
Index

Python JSON libraries


JavaScript Object Notation (JSON) is rapidly becoming the number one data exchange format across a lot of fields and, no, it's no different. The lightweight syntax and the similarity to existing data structures makes it a perfect match for Python.

We'll use the following geoJSON sample document for this section from the Wikipedia article on GeoJSON found at: http://en.wikipedia.org/wiki/GeoJSON

The document contains a single point:

{
    "type": "Feature",
    "id": "OpenLayers.Feature.Vector_314",
    "properties": {},
    "geometry": {
        "type": "Point",
        "coordinates": [
            97.03125,
            39.7265625
        ]
    },
    "crs": {
        "type": "name",
        "properties": {
            "name": "urn:ogc:def:crs:OGC:1.3:CRS84"
        }
    }
}

This sample is just a simple point with new attributes which would be stored in the properties data structure of the geometry. First we'll compact the sample document into a single string to make...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Learning Geospatial Analysis with Python
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon