-
Book Overview & Buying
-
Table Of Contents
Scala for Data Science
By :
Data science is the process of extracting useful information from data. As a discipline, it remains somewhat ill-defined, with nearly as many definitions as there are experts. Rather than add yet another definition, I will follow Drew Conway's description (http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram). He describes data science as the culmination of three orthogonal sets of skills:
Drew Conway summarizes this elegantly with a Venn diagram showing data science at the intersection of hacking skills, maths and statistics knowledge, and substantive expertise:

It is, of course, rare for people to be experts in more than one of these areas. Data scientists often work in cross-functional teams, with different members providing the expertise for different areas. To function effectively, every member of the team must nevertheless have a general working knowledge of all three areas.
To give a more concrete overview of the workflow in a data science project, let's imagine that we are trying to write an application that analyzes the public perception of a political campaign. This is what the data science pipeline might look like:
This is far from a linear pipeline. Often, insights gained at one stage will require the data scientists to backtrack to a previous stage of the pipeline. Indeed, the generation of business insights from raw data is normally an iterative process: the data scientists might do a rapid first pass to verify the premise of the problem and then gradually refine the approach by adding new data sources or new features or trying new machine learning algorithms.
In this book, you will learn how to deal with each step of the pipeline in Scala, leveraging existing libraries to build robust applications.
Change the font size
Change margin width
Change background colour