Book Image

Python Parallel Programming Cookbook - Second Edition

By : Giancarlo Zaccone
Book Image

Python Parallel Programming Cookbook - Second Edition

By: Giancarlo Zaccone

Overview of this book

<p>Nowadays, it has become extremely important for programmers to understand the link between the software and the parallel nature of their hardware so that their programs run efficiently on computer architectures. Applications based on parallel programming are fast, robust, and easily scalable. </p><p> </p><p>This updated edition features cutting-edge techniques for building effective concurrent applications in Python 3.7. The book introduces parallel programming architectures and covers the fundamental recipes for thread-based and process-based parallelism. You'll learn about mutex, semaphores, locks, queues exploiting the threading, and multiprocessing modules, all of which are basic tools to build parallel applications. Recipes on MPI programming will help you to synchronize processes using the fundamental message passing techniques with mpi4py. Furthermore, you'll get to grips with asynchronous programming and how to use the power of the GPU with PyCUDA and PyOpenCL frameworks. Finally, you'll explore how to design distributed computing systems with Celery and architect Python apps on the cloud using PythonAnywhere, Docker, and serverless applications. </p><p> </p><p>By the end of this book, you will be confident in building concurrent and high-performing applications in Python.</p>
Table of Contents (16 chapters)
Title Page
Dedication

Optimizing communication

An interesting feature that is provided by MPI regards virtual topologies. As already noted, all the communication functions (point-to-point or collective) refer to a group of processes. We have always used the MPI_COMM_WORLD group that includes all processes. It assigns a rank of 0 to n-1 for each process that belongs to a communicator of the size n.

However, MPI allows us to assign a virtual topology to a communicator. It defines an assignment of labels to the different processes: by building a virtual topology, each node will communicate only with its virtual neighbor, improving performance because it reduces execution times.

For example, if the rank was randomly assigned, then a message could be forced to pass to many other nodes before it reaches the destination. Beyond the question of performance, a virtual topology makes sure that the code...