Book Image

Expert Python Programming - Third Edition

By : Michał Jaworski, Tarek Ziadé
Book Image

Expert Python Programming - Third Edition

By: Michał Jaworski, Tarek Ziadé

Overview of this book

Python is a dynamic programming language that's used in a wide range of domains thanks to its simple yet powerful nature. Although writing Python code is easy, making it readable, reusable, and easy to maintain is challenging. Complete with best practices, useful tools, and standards implemented by professional Python developers, the third edition of Expert Python Programming will help you overcome this challenge. The book will start by taking you through the new features in Python 3.7. You'll then learn the advanced components of Python syntax, in addition to understanding how to apply concepts of various programming paradigms, including object-oriented programming, functional programming, and event-driven programming. This book will also guide you through learning the naming best practices, writing your own distributable Python packages, and getting up to speed with automated ways to deploy your software on remote servers. You’ll discover how to create useful Python extensions with C, C++, Cython, and CFFI. Furthermore, studying about code management tools, writing clear documentation, and exploring test-driven development will help you write clean code. By the end of the book, you will have become an expert in writing efficient and maintainable Python code.
Table of Contents (25 chapters)
Free Chapter
1
Section 1: Before You Start
4
Section 2: Python Craftsmanship
12
Section 3: Quality over Quantity
16
Section 4: Need for Speed
20
Section 5: Technical Architecture
23
reStructuredText Primer

Why concurrency?

Before we answer the question why concurrency, we need to ask, what is concurrency at all?

The answer to the latter question may be surprising for someone who used to think that it is a synonym for parallel processing. First and foremost, concurrency is not the same as parallelism. Concurrency is also not a matter of application implementation. It is a property of a program, algorithm, or problem where parallelism is just one of the possible approaches to the problems that are concurrent.

Leslie Lamport in his Time, Clocks, and the Ordering of Events in Distributed Systems paper from 1976, defines the concept of concurrency as follows:

"Two events are concurrent if neither can causally affect the other."

By extrapolating events to programs, algorithms, or problems, we can say that something is concurrent if it can be fully or partially decomposed into...