Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Learning Geospatial Analysis with Python
  • Table Of Contents Toc
  • Feedback & Rating feedback
Learning Geospatial Analysis with Python

Learning Geospatial Analysis with Python - Third Edition

By : Joel Lawhead
3 (3)
close
close
Learning Geospatial Analysis with Python

Learning Geospatial Analysis with Python

3 (3)
By: Joel Lawhead

Overview of this book

Geospatial analysis is used in almost every domain you can think of, including defense, farming, and even medicine. With this systematic guide, you'll get started with geographic information system (GIS) and remote sensing analysis using the latest features in Python. This book will take you through GIS techniques, geodatabases, geospatial raster data, and much more using the latest built-in tools and libraries in Python 3.7. You'll learn everything you need to know about using software packages or APIs and generic algorithms that can be used for different situations. Furthermore, you'll learn how to apply simple Python GIS geospatial processes to a variety of problems, and work with remote sensing data. By the end of the book, you'll be able to build a generic corporate system, which can be implemented in any organization to manage customer support requests and field support personnel.
Table of Contents (15 chapters)
close
close
Lock Free Chapter
1
Section 1: The History and the Present of the Industry
5
Section 2: Geospatial Analysis Concepts
10
Section 3: Practical Geospatial Processing Techniques

Advanced Geospatial Python Modeling

In this chapter, we'll build on the data processing concepts that we've learned in order to create some full-scale information products. The previously introduced data processing methods rarely provide answers to questions by themselves. You combine these data processing methods to build a geospatial model from multiple processed datasets. A geospatial model is a simplified representation of some aspect of the real world, which helps us answer one or more questions about a project or problem. In this chapter, we will introduce some important geospatial algorithms that are commonly used in agriculture, emergency management, logistics, and other industries.

The products that we will create are as follows:

  • A crop health map
  • A flood inundation model
  • A colorized hillshade
  • A terrain routing map
  • A street routing map
  • A shapefile with links...
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Learning Geospatial Analysis with Python
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon