Book Image

Dancing with Qubits - Second Edition

By : Robert S. Sutor
Book Image

Dancing with Qubits - Second Edition

By: Robert S. Sutor

Overview of this book

Dancing with Qubits, Second Edition, is a comprehensive quantum computing textbook that starts with an overview of why quantum computing is so different from classical computing and describes several industry use cases where it can have a major impact. A full description of classical computing and the mathematical underpinnings of quantum computing follows, helping you better understand concepts such as superposition, entanglement, and interference. Next up are circuits and algorithms, both basic and sophisticated, as well as a survey of the physics and engineering ideas behind how quantum computing hardware is built. Finally, the book looks to the future and gives you guidance on understanding how further developments may affect you. This new edition is updated throughout with more than 100 new exercises and includes new chapters on NISQ algorithms and quantum machine learning. Understanding quantum computing requires a lot of math, and this book doesn't shy away from the necessary math concepts you'll need. Each topic is explained thoroughly and with helpful examples, leaving you with a solid foundation of knowledge in quantum computing that will help you pursue and leverage quantum-led technologies.
Table of Contents (26 chapters)
1
I Foundations
8
II Quantum Computing
14
III Advanced Topics
18
Afterword
22
Other Books You May Enjoy
23
References
24
Index
Appendices

Why Quantum Computing

Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make it quantum mechanical.

Richard Feynman
84

In his 1982 paper “Simulating Physics with Computers,” Richard Feynman, 1965 Nobel Laureate in Physics, said he wanted to “talk about the possibility that there is to be an exact simulation, that the computer will do exactly the same as nature.” He then made the statement above, asserting that nature doesn’t especially make itself amenable to computation via classical binary computers.

In this chapter, we begin to explore how quantum computing differs from classical computing. Classical computing drives smartphones, laptops, Internet servers, mainframes, high-performance computers, and even the processors in automobiles.

We examine several use cases where quantum computing may someday help us solve today’s intractable problems using classical methods on classical computers. This is to motivate you to learn about the underpinnings and details of quantum computers I discuss throughout the book.

No single book on this topic can be complete. The technology and potential use cases are moving targets as we innovate and create better hardware and software. My goal here is to prepare you to delve more deeply into the science, coding, and applications of quantum computing.