Book Image

Mastering Kubernetes

By : Gigi Sayfan
Book Image

Mastering Kubernetes

By: Gigi Sayfan

Overview of this book

Kubernetes is an open source system to automate the deployment, scaling, and management of containerized applications. If you are running more than just a few containers or want automated management of your containers, you need Kubernetes. This book mainly focuses on the advanced management of Kubernetes clusters. It covers problems that arise when you start using container orchestration in production. We start by giving you an overview of the guiding principles in Kubernetes design and show you the best practises in the fields of security, high availability, and cluster federation. You will discover how to run complex stateful microservices on Kubernetes including advanced features as horizontal pod autoscaling, rolling updates, resource quotas, and persistent storage back ends. Using real-world use cases, we explain the options for network configuration and provides guidelines on how to set up, operate, and troubleshoot various Kubernetes networking plugins. Finally, we cover custom resource development and utilization in automation and maintenance workflows. By the end of this book, you’ll know everything you need to know to go from intermediate to advanced level.
Table of Contents (22 chapters)
Mastering Kubernetes
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
Index

Persistent volumes walkthrough


In this section, we will understand the Kubernetes storage conceptual model and see how to map persistent storage into containers so they can read and write. Let's start by understanding the problem of storage. Containers and pods are ephemeral. Anything a container writes to its own filesystem gets wiped out when the container dies. Containers can also mount directories from their host node and read or write. That will survive container restarts, but the nodes themselves are not immortal.

There are other problems, such as ownership for mounted hosted directories when the container dies. Just imagine a bunch of containers writing important data to various data directories on their host and then go away leaving all that data all over the nodes with no direct way to tell what container wrote what data. You can try to record this information, but where would you record it? It's pretty clear that for a large-scale system, you need persistent storage accessible...