Book Image

Ceph: Designing and Implementing Scalable Storage Systems

By : Michael Hackett, Vikhyat Umrao, Karan Singh, Nick Fisk, Anthony D'Atri, Vaibhav Bhembre
Book Image

Ceph: Designing and Implementing Scalable Storage Systems

By: Michael Hackett, Vikhyat Umrao, Karan Singh, Nick Fisk, Anthony D'Atri, Vaibhav Bhembre

Overview of this book

This Learning Path takes you through the basics of Ceph all the way to gaining in-depth understanding of its advanced features. You’ll gather skills to plan, deploy, and manage your Ceph cluster. After an introduction to the Ceph architecture and its core projects, you’ll be able to set up a Ceph cluster and learn how to monitor its health, improve its performance, and troubleshoot any issues. By following the step-by-step approach of this Learning Path, you’ll learn how Ceph integrates with OpenStack, Glance, Manila, Swift, and Cinder. With knowledge of federated architecture and CephFS, you’ll use Calamari and VSM to monitor the Ceph environment. In the upcoming chapters, you’ll study the key areas of Ceph, including BlueStore, erasure coding, and cache tiering. More specifically, you’ll discover what they can do for your storage system. In the concluding chapters, you will develop applications that use Librados and distributed computations with shared object classes, and see how Ceph and its supporting infrastructure can be optimized. By the end of this Learning Path, you'll have the practical knowledge of operating Ceph in a production environment. This Learning Path includes content from the following Packt products: • Ceph Cookbook by Michael Hackett, Vikhyat Umrao and Karan Singh • Mastering Ceph by Nick Fisk • Learning Ceph, Second Edition by Anthony D'Atri, Vaibhav Bhembre and Karan Singh
Table of Contents (27 chapters)
Title Page
About Packt
Contributors
Preface
Index

What is erasure coding?


Erasure coding allows Ceph to achieve either greater usable storage capacity or increase resilience to disk failure for the same number of disks versus the standard replica method. Erasure coding achieves this by splitting up the object into a number of parts and then also calculating a type of cyclic redundancy check (CRC), the erasure code, and then storing the results in one or more extra parts. Each part is then stored on a separate OSD. These parts are referred to as K and M chunks, where K refers to the number of data shards and M refers to the number of erasure code shards. As in RAID, these can often be expressed in the form K+M, or 4+2, for example.

In the event of an OSD failure which contains an object's shard which is one of the calculated erasure codes, data is read from the remaining OSDs that store data with no impact. However, in the event of an OSD failure which contains the data shards of an object, Ceph can use the erasure codes to mathematically...