Book Image

Mastering the C++17 STL

By : Arthur O'Dwyer
Book Image

Mastering the C++17 STL

By: Arthur O'Dwyer

Overview of this book

Modern C++ has come a long way since 2011. The latest update, C++17, has just been ratified and several implementations are on the way. This book is your guide to the C++ standard library, including the very latest C++17 features. The book starts by exploring the C++ Standard Template Library in depth. You will learn the key differences between classical polymorphism and generic programming, the foundation of the STL. You will also learn how to use the various algorithms and containers in the STL to suit your programming needs. The next module delves into the tools of modern C++. Here you will learn about algebraic types such as std::optional, vocabulary types such as std::function, smart pointers, and synchronization primitives such as std::atomic and std::mutex. In the final module, you will learn about C++'s support for regular expressions and file I/O. By the end of the book you will be proficient in using the C++17 standard library to implement real programs, and you'll have gained a solid understanding of the library's own internals.
Table of Contents (13 chapters)

Smart Pointers

C++ holds its grip on large swaths of the software industry by virtue of its performance--well-written C++ code runs faster than anything else out there, almost by definition, because C++ gives the programmer almost complete control over the code that is ultimately generated by the compiler.

One of the classic features of low-level, performant code is the use of raw pointers (Foo*). However, raw pointers come with many pitfalls, such as memory leaks and dangling pointers. The C++11 library's "smart pointer" types can help you avoid these pitfalls at little to no expense.

In this chapter we'll learn the following:

  • The definition of "smart pointer" and how you might write your own
  • The usefulness of std::unique_ptr<T> in preventing resource leaks of all types (not just memory leaks)
  • How std::shared_ptr<T> is implemented, and...