Book Image

R Deep Learning Essentials

By : Joshua F. Wiley
Book Image

R Deep Learning Essentials

By: Joshua F. Wiley

Overview of this book

<p>Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data by using model architectures. With the superb memory management and the full integration with multi-node big data platforms, the H2O engine has become more and more popular among data scientists in the field of deep learning.</p> <p>This book will introduce you to the deep learning package H2O with R and help you understand the concepts of deep learning. We will start by setting up important deep learning packages available in R and then move towards building models related to neural networks, prediction, and deep prediction, all of this with the help of real-life examples.</p> <p>After installing the H2O package, you will learn about prediction algorithms. Moving ahead, concepts such as overfitting data, anomalous data, and deep prediction models are explained. Finally, the book will cover concepts relating to tuning and optimizing models.</p>
Table of Contents (14 chapters)
R Deep Learning Essentials
Credits
About the Author
About the Reviewer
www.PacktPub.com
Preface
Bibliography
Index

Getting started with deep feedforward neural networks


A deep feedforward neural network is designed to approximate a function, f(), that maps some set of input variables, x, to an output variable, y. They are called feedforward neural networks because information flows from the inputs through each successive layer as far as the output, and there are no feedback or recursive loops (models including both forward and backward connections are referred to as recurrent neural networks).

Deep feedforward neural networks are applicable to a wide range of problems, and are particularly useful for applications such as image classification. More generally, feedforward neural networks are useful for prediction and classification where there is a clearly defined outcome (what digit an image contains, whether someone is walking upstairs or walking on a flat surface, the presence/absence of disease, and so on). In these cases, there is no particular need for a feedback loop. Recurrent networks are useful...