Book Image

Regression Analysis with Python

By : Luca Massaron, Alberto Boschetti
4 (1)
Book Image

Regression Analysis with Python

4 (1)
By: Luca Massaron, Alberto Boschetti

Overview of this book

Regression is the process of learning relationships between inputs and continuous outputs from example data, which enables predictions for novel inputs. There are many kinds of regression algorithms, and the aim of this book is to explain which is the right one to use for each set of problems and how to prepare real-world data for it. With this book you will learn to define a simple regression problem and evaluate its performance. The book will help you understand how to properly parse a dataset, clean it, and create an output matrix optimally built for regression. You will begin with a simple regression algorithm to solve some data science problems and then progress to more complex algorithms. The book will enable you to use regression models to predict outcomes and take critical business decisions. Through the book, you will gain knowledge to use Python for building fast better linear models and to apply the results in Python or in any computer language you prefer.
Table of Contents (16 chapters)
Regression Analysis with Python
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
Index

Checking on out-of-sample data


Until this point in the book, we have striven to make the regression model fit data, even by modifying the data itself (inputting missing data, removing outliers, transforming for non-linearity, or creating new features). By keeping an eye on measures such as R-squared, we have tried our best to reduce prediction errors, though we have no idea to what extent this was successful.

The problem we face now is that we shouldn't expect a well fit model to automatically perform well on any new data during production.

While defining and explaining the problem, we recall what we said about underfitting. Since we are working with a linear model, we are actually expecting to apply our work to data that has a linear relationship with the response variable. Having a linear relationship means that, with respect to the level of the response variable, our predictors always tend to constantly increase (or decrease) at the same rate. Graphically, on a scatterplot, this is refigured...