Book Image

Data Science Algorithms in a Week

By : Dávid Natingga
Book Image

Data Science Algorithms in a Week

By: Dávid Natingga

Overview of this book

<p>Machine learning applications are highly automated and self-modifying, and they continue to improve over time with minimal human intervention as they learn with more data. To address the complex nature of various real-world data problems, specialized machine learning algorithms have been developed that solve these problems perfectly. Data science helps you gain new knowledge from existing data through algorithmic and statistical analysis.</p> <p>This book will address the problems related to accurate and efficient data classification and prediction. Over the course of 7 days, you will be introduced to seven algorithms, along with exercises that will help you learn different aspects of machine learning. You will see how to pre-cluster your data to optimize and classify it for large datasets. You will then find out how to predict data based on the existing trends in your datasets.</p> <p>This book covers algorithms such as: k-Nearest Neighbors, Naive Bayes, Decision Trees, Random Forest, k-Means, Regression, and Time-series. On completion of the book, you will understand which machine learning algorithm to pick for clustering, classification, or regression and which is best suited for your problem.</p>
Table of Contents (12 chapters)
11
Glossary of Algorithms and Methods in Data Science

Implementation of naive Bayes classifier

We implement a program calculating the probability of a data item belonging to a certain class using Bayes' theorem:

# source_code/2/naive_bayes.py 
# A program that reads the CSV file with the data and returns
# the Bayesian probability for the unknown value denoted by ? to
# belong to a certain class.
# An input CSV file should be of the following format:
# 1. items in a row should be separated by a comma ','
# 2. the first row should be a heading - should contain a name for each
# column of the data.
# 3. the remaining rows should contain the data itself - rows with
# complete and rows with the incomplete data.
# A row with complete data is the row that has a non-empty and
# non-question mark value for each column. A row with incomplete data is
# the row that has the last column with the value of a question mark ?.
# Please...