Book Image

Mastering Machine Learning with scikit-learn - Second Edition

By : Gavin Hackeling
Book Image

Mastering Machine Learning with scikit-learn - Second Edition

By: Gavin Hackeling

Overview of this book

Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model. This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn’s API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model’s performance. By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach.
Table of Contents (22 chapters)
Title Page
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
9
From Decision Trees to Random Forests and Other Ensemble Methods
Index

K-Nearest Neighbors


KNN is a simple model for regression and classification tasks. It is so simple that its name describes most of its learning algorithm. The titular neighbors are representations of training instances in a metric space. A metric space is a feature space in which the distances between all members of a set are defined. In the previous chapter's pizza problem, our training instances were represented in a metric space because the distances between all the pizza diameters was defined. These neighbors are used to estimate the value of the response variable for a test instance. The hyperparameter k specifies how many neighbors can be used in the estimation. A hyperparameter is a parameter that controls how the algorithm learns; hyperparameters are not estimated from the training data and are sometimes set manually. Finally, the k neighbors that are selected are those that are nearest to the test instance, as measured by some distance function.

For classification tasks, a set of...