Book Image

Machine Learning for Healthcare Analytics Projects

Book Image

Machine Learning for Healthcare Analytics Projects

Overview of this book

Machine Learning (ML) has changed the way organizations and individuals use data to improve the efficiency of a system. ML algorithms allow strategists to deal with a variety of structured, unstructured, and semi-structured data. Machine Learning for Healthcare Analytics Projects is packed with new approaches and methodologies for creating powerful solutions for healthcare analytics. This book will teach you how to implement key machine learning algorithms and walk you through their use cases by employing a range of libraries from the Python ecosystem. You will build five end-to-end projects to evaluate the efficiency of Artificial Intelligence (AI) applications for carrying out simple-to-complex healthcare analytics tasks. With each project, you will gain new insights, which will then help you handle healthcare data efficiently. As you make your way through the book, you will use ML to detect cancer in a set of patients using support vector machines (SVMs) and k-Nearest neighbors (KNN) models. In the final chapters, you will create a deep neural network in Keras to predict the onset of diabetes in a huge dataset of patients. You will also learn how to predict heart diseases using neural networks. By the end of this book, you will have learned how to address long-standing challenges, provide specialized solutions for how to deal with them, and carry out a range of cognitive tasks in the healthcare domain.
Table of Contents (7 chapters)

Reducing overfitting using dropout regularization

We will now use the information we gained in the Performing a grid search using scikit-learn section to optimize other aspects of our model. It looks like we might be overfitting the data a little bit, as we are getting better results on our training data than our testing data. We're now going to look at adding in dropout regularization:

  1. Our first step is to copy the code that is present in the grid search cell that we ran in the previous section, and paste it in a fresh cell. We will keep the general structure of the code and play around with some of the parameters present.
  1. We will then import the Dropout function from keras.layers using the following line:
from keras.layers import Dropout
  1. We will now convert the learning rate into a variable by defining it in the Adam optimizer code block. We will use learn_rate as...