Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Machine Learning Algorithms
  • Table Of Contents Toc
  • Feedback & Rating feedback
Machine Learning Algorithms

Machine Learning Algorithms

4.5 (4)
close
close
Machine Learning Algorithms

Machine Learning Algorithms

4.5 (4)

Overview of this book

In this book, you will learn all the important machine learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. The algorithms that are covered in this book are linear regression, logistic regression, SVM, naïve Bayes, k-means, random forest, TensorFlow and feature engineering. In this book, you will how to use these algorithms to resolve your problems, and how they work. This book will also introduce you to natural language processing and recommendation systems, which help you to run multiple algorithms simultaneously. On completion of the book, you will know how to pick the right machine learning algorithm for clustering, classification, or regression for your problem
Table of Contents (16 chapters)
close
close

Data scaling and normalization


A generic dataset (we assume here that it is always numerical) is made up of different values which can be drawn from different distributions, having different scales and, sometimes, there are also outliers. A machine learning algorithm isn't naturally able to distinguish among these various situations, and therefore, it's always preferable to standardize datasets before processing them. A very common problem derives from having a non-zero mean and a variance greater than one. In the following figure, there's a comparison between a raw dataset and the same dataset scaled and centered:

This result can be achieved using the StandardScaler class:

from sklearn.preprocessing import StandardScaler

>>> ss = StandardScaler()
>>> scaled_data = ss.fit_transform(data)

It's possible to specify if the scaling process must include both mean and standard deviation using the parameters with_mean=True/False and with_std=True/False (by default they're both active...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Machine Learning Algorithms
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon