Book Image

Machine Learning Quick Reference

By : Rahul Kumar
Book Image

Machine Learning Quick Reference

By: Rahul Kumar

Overview of this book

Machine learning makes it possible to learn about the unknowns and gain hidden insights into your datasets by mastering many tools and techniques. This book guides you to do just that in a very compact manner. After giving a quick overview of what machine learning is all about, Machine Learning Quick Reference jumps right into its core algorithms and demonstrates how they can be applied to real-world scenarios. From model evaluation to optimizing their performance, this book will introduce you to the best practices in machine learning. Furthermore, you will also look at the more advanced aspects such as training neural networks and work with different kinds of data, such as text, time-series, and sequential data. Advanced methods and techniques such as causal inference, deep Gaussian processes, and more are also covered. By the end of this book, you will be able to train fast, accurate machine learning models at your fingertips, which you can easily use as a point of reference.
Table of Contents (18 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
Index

Cross-validation and model selection


We have already spoken about overfitting. It is something to do with the stability of a model since the real test of a model occurs when it works on unseen and new data. One of the most important aspects of a model is that it shouldn't pick up on noise, apart from regular patterns.

Validation is nothing but an assurance of the model being a relationship between the response and predictors as the outcome of input features and not noise. A good indicator of the model is not through training data and error. That's why we need cross-validation.

Here, we will stick with k-fold cross-validation and understand how it can be used.

K-fold cross-validation

Let's walk through the steps of k-fold cross-validation:

  1. The data is divided into k-subsets.
  2. One set is kept for testing/development and the model is built on the rest of the data (k-1). That is, the rest of the data forms the training data.
  1. Step 2 is repeated k-times. That is, once the preceding step has been performed, we move on to the second set and it forms a test set. The rest of the (k-1) data is then available for building the model:

4. An error is calculated and an average is taken over all k-trials.

Every subset gets one chance to be a validation/test set since most of the data is used as a training set. This helps in reducing bias. At the same time, almost all the data is being used as validation set, which reduces variance.

As shown in the preceding diagram, k = 5 has been selected. This means that we have to divide the whole dataset into five subsets. In the first iteration, subset 5 becomes the test data and the rest becomes the training data. Likewise, in the second iteration, subset 4 turns into the test data and the rest becomes the training data. This goes on for five iterations.

Now, let's try to do this in Python by splitting the train and test data using the K neighbors classifier:

from sklearn.datasets import load_breast_cancer # importing the dataset
from sklearn.cross_validation import train_test_split,cross_val_score # it will help in splitting train & test
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics

BC =load_breast_cancer() 
X = BC.data
y = BC.target

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=4)

knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
print(metrics.accuracy_score(y_test, y_pred))

knn = KNeighborsClassifier(n_neighbors=5)
scores = cross_val_score(knn, X, y, cv=10, scoring='accuracy')
print(scores)
print(scores.mean())