Book Image

Becoming KCNA Certified

By : Dmitry Galkin
Book Image

Becoming KCNA Certified

By: Dmitry Galkin

Overview of this book

The job market related to the cloud and cloud-native technologies is both growing and becoming increasingly competitive, making certifications like KCNA a great way to stand out from the crowd and learn about the latest advancements in cloud technologies. Becoming KCNA Certified doesn't just give you the practical skills needed to deploy and connect applications in Kubernetes, but it also prepares you to pass the Kubernetes and Cloud Native Associate (KCNA) exam on your first attempt. The book starts by introducing you to cloud-native computing, containers, and Kubernetes through practical examples, allowing you to test the theory out for yourself. You'll learn how to configure and provide storage for your Kubernetes-managed applications and explore the principles of modern cloud-native architecture and application delivery, giving you a well-rounded view of the subject. Once you've been through the theoretical and practical aspects of the book, you'll get the chance to test what you’ve learnt with two mock exams, with explanations of the answers, so you'll be well-prepared to appear for the KCNA exam. By the end of this Kubernetes book, you'll have everything you need to pass the KCNA exam and forge a career in Kubernetes and cloud-native computing.
Table of Contents (22 chapters)
1
Part 1: The Cloud Era
4
Part 2: Performing Container Orchestration
7
Part 3: Learning Kubernetes Fundamentals
12
Part 4: Exploring Cloud Native
16
Part 5: KCNA Exam and Next Steps

Summary

In this chapter, we learned about the concepts of the cloud and containers, and the evolution of computing over the last 20 to 30 years. In the era before the cloud, traditional deployments with one or a few applications per physical server caused a lot of inefficiency and wasted resources with underutilized hardware and high costs of ownership.

When virtualization technologies came along, it became possible to run many applications per physical server using VMs. This addressed the pitfalls of traditional deployments and allowed us to deliver new applications more quickly and with significantly lower costs.

Virtualization paved the way for the cloud services that are delivered via four different models today: IaaS, PaaS, SaaS, and FaaS or Serverless. Customer responsibilities differ by cloud service and delivery model.

This progress never stopped – now, cloud-native as an approach to building and running applications has emerged. Cloud-native applications are designed and built with an emphasis on scalability, resilience, ease of management, and a high degree of automation.

Over recent years, container technology has developed and gained momentum. Containers use virtualization at the OS level and each container represents a virtual OS environment. Containers are faster, more efficient, and more portable compared to VMs.

Containers enabled us to develop and manage modern applications based on a microservices architecture. Microservices were a step ahead compared to traditional monoliths – all-in-one, behemoth applications.

While containers are one of the most efficient ways to run cloud-native applications, it becomes hard to manage large numbers of containers. Therefore, containers are best managed using an orchestrator such as Kubernetes.

Kubernetes is an open source container orchestration system that originated from Google and automates many operational aspects of containers. Kubernetes will schedule, start, stop, and restart containers and increase or decrease the number of containers based on the provided specification automatically. Kubernetes makes it possible to implement self-healing and autoscaling based on the current demand.