Book Image

Technology Operating Models for Cloud and Edge

By : Ahilan Ponnusamy, Andreas Spanner
Book Image

Technology Operating Models for Cloud and Edge

By: Ahilan Ponnusamy, Andreas Spanner

Overview of this book

Cloud goals, such as faster time to market, lower total cost of ownership (TCO), capex reduction, self-service enablement, and complexity reduction are important, but organizations often struggle to achieve the desired outcomes. With edge computing gaining momentum across industries and making it possible to move workloads seamlessly between cloud and edge locations, organizations need working recipes to find ways of extracting the most value out of their cloud and edge estate. This book provides a practical way to build a strategy-aligned operating model while considering various related factors such as culture, leadership, team structures, metrics, intrinsic motivators, team incentives, tenant experience, platform engineering, operations, open source, and technology choices. Throughout the chapters, you’ll discover how single, hybrid, or multicloud architectures, security models, automation, application development, workload deployments, and application modernization can be reutilized for edge workloads to help you build a secure yet flexible technology operating model. The book also includes a case study which will walk you through the operating model build process in a step-by-step way. By the end of this book, you’ll be able to build your own fit-for-purpose distributed technology operating model for your organization in an open culture way.
Table of Contents (13 chapters)
1
Part 1:Enterprise Technology Landscape and Operating Model Challenges
6
Part 2: Building a Successful Technology Operating Model for Your Organization
8
Chapter 6: Your Distributed Technology Operating Model in Action

Defining the cloud and the edge – hybrid cloud, multi-cloud, plus near and far edge

Cloud computing is a model for delivering computing resources, such as servers, storage, databases, and other services, over the internet. In cloud computing, users can access and use these resources on demand, without having to own and maintain their computing infrastructure.

Cloud computing is typically provided by third-party cloud service providers who manage and maintain the underlying hardware and software infrastructure, as well as provide the necessary network connectivity, security, and support services.

There are three main types of cloud computing services:

  • Infrastructure-as-a-Service (IaaS): This provides users with access to computing infrastructure such as virtual machines, storage, and networking resources
  • Platform-as-a-Service (PaaS): This provides users with a platform for developing, running, and managing applications without having to worry about the underlying infrastructure
  • Software-as-a-Service (SaaS): This provides users with access to software applications that are hosted and maintained by the cloud provider

Hybrid cloud is a computing environment that combines both private and public cloud infrastructures. With hybrid cloud, organizations can use both on-premises (private cloud) and public cloud-based resources. Co-location providers such as Equinix count as on-premises and/or private clouds.

This approach enables organizations to take advantage of the scalability and cost-effectiveness of public cloud resources while maintaining sovereignty over their sensitive data and applications through private cloud resources. Organizations usually run their non-cloud-ready applications using 24/7-always on or monolithic core systems of records-type applications such as non-SaaS ERP, CRM, finance, and HR systems, such as on-premises ones.

Multi-cloud refers to a cloud computing environment that involves using multiple (public) cloud service providers to host different parts of an organization’s computing infrastructure or workloads. In other words, instead of relying on a single cloud provider, a multi-cloud strategy involves using multiple cloud providers in a coordinated manner.

Edge computing, on the other hand, involves processing data closer to where it is generated, rather than in a centralized cloud environment. It refers to the use of decentralized computing resources that are located at or near the edge of a network, rather than in a centralized data center. This can improve the speed and efficiency of data processing and reduce latency. Edge computing typically involves small, distributed computing resources located at the edge of the network, such as sensors, small form factor compute devices, robots, or edge servers. Depending on the distance from the user or data center, edge computing can be further categorized into near and far.

The associated benefits allow organizations to process data closer to the source of the data, which can reduce latency and improve the performance of applications and services and reduce network design complexity. By including edge computing in a hybrid and multi-cloud model, organizations can take advantage of the flexibility and scalability of the cloud, while also being able to process data in real time at the edge of the network. This ultimately enables organizations to address requirements and execute use cases that were not possible before.

Together, cloud and edge computing create a comprehensive computing environment that combines the benefits of both approaches. For example, an organization might use a hybrid cloud to store and manage its data and run both cloud-native and monolithic applications while using edge computing to process data generated by IoT or other edge devices in real time.