Book Image

CCNA Cyber Ops SECOPS – Certification Guide 210-255

By : Andrew Chu
5 (1)
Book Image

CCNA Cyber Ops SECOPS – Certification Guide 210-255

5 (1)
By: Andrew Chu

Overview of this book

Cybersecurity roles have grown exponentially in the IT industry and an increasing number of organizations have set up security operations centers (SOCs) to monitor and respond to security threats. The 210-255 SECOPS exam is the second of two exams required for the Cisco CCNA Cyber Ops certification. By providing you with fundamental knowledge of SOC events, this certification validates your skills in managing cybersecurity processes such as analyzing threats and malicious activities, conducting security investigations, and using incident playbooks. You'll start by understanding threat analysis and computer forensics, which will help you build the foundation for learning intrusion analysis and incident response principles. The book will then guide you through vocabulary and techniques for analyzing data from the network and previous events. In later chapters, you'll discover how to identify, analyze, correlate, and respond to incidents, including how to communicate technical and inaccessible (non-technical) examples. You'll be able to build on your knowledge as you learn through examples and practice questions, and finally test your knowledge with two mock exams that allow you to put what you’ve learned to the test. By the end of this book, you'll have the skills to confidently pass the SECOPS 210-255 exam and achieve CCNA Cyber Ops certification.
Table of Contents (24 chapters)
Free Chapter
1
Section 1: Endpoint Threat Analysis and Forensics
5
Section 2: Intrusion Analysis
9
Section 3: Incident Response
13
Section 4: Data and Event Analysis
16
Section 5: Incident Handling
19
Section 6: Mock Exams
20
Mock Exam 1
21
Mock Exam 2

Starting the operating system

An operating system (OS) is a software system that manages computer hardware and software resources and provides common services for computer programs. An operating system is responsible for controlling access to, and the efficient management of, system resources (for example, memory allocation, input and output devices, and processing time). This is done by acting as an intermediary between programs and computer hardware.

In this section, you will learn about the way the operating system is stored in the main memory, as well as how it is located and booted differently by Linux and Windows systems.

The two major groups of operating systems are Unix-like systems (for example, Linux and macOS) and Microsoft Windows. Linux is open source, which means that all the source programming files are available for download for viewing and modification, and therefore...