Book Image

Getting Started with Kubernetes - Third Edition

By : Jonathan Baier, Jesse White
Book Image

Getting Started with Kubernetes - Third Edition

By: Jonathan Baier, Jesse White

Overview of this book

Kubernetes has continued to grow and achieve broad adoption across various industries, helping you to orchestrate and automate container deployments on a massive scale. Based on the recent release of Kubernetes 1.12, Getting Started with Kubernetes gives you a complete understanding of how to install a Kubernetes cluster. The book focuses on core Kubernetes constructs, such as pods, services, replica sets, replication controllers, and labels. You will understand cluster-level networking in Kubernetes, and learn to set up external access to applications running in the cluster. As you make your way through the book, you'll understand how to manage deployments and perform updates with minimal downtime. In addition to this, you will explore operational aspects of Kubernetes , such as monitoring and logging, later moving on to advanced concepts such as container security and cluster federation. You'll get to grips with integrating your build pipeline and deployments within a Kubernetes cluster, and be able to understand and interact with open source projects. In the concluding chapters, you'll orchestrate updates behind the scenes, avoid downtime on your cluster, and deal with underlying cloud provider instability within your cluster. By the end of this book, you'll have a complete understanding of the Kubernetes platform and will start deploying applications on it.
Table of Contents (23 chapters)
Title Page
Dedication
Packt Upsell
Contributors
Preface
Index

Application scheduling


Now that we understand how to run containers in pods and even recover from failure, it may be useful to understand how new containers are scheduled on our cluster nodes.

As mentioned earlier, the default behavior for the Kubernetes scheduler is to spread container replicas across the nodes in our cluster. In the absence of all other constraints, the scheduler will place new pods on nodes with the least number of other pods belonging to matching services or replication controllers.

Additionally, the scheduler provides the ability to add constraints based on resources available to the node. Today, this includes minimum CPU and memory allocations. In terms of Docker, these use the CPU-shares and memory limit flags under the covers.

When additional constraints are defined, Kubernetes will check a node for available resources. If a node does not meet all the constraints, it will move to the next. If no nodes can be found that meet the criteria, then we will see a scheduling...