Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Linux Device Drivers Development
  • Table Of Contents Toc
Linux Device Drivers Development

Linux Device Drivers Development

By : John Madieu
4 (30)
close
close
Linux Device Drivers Development

Linux Device Drivers Development

4 (30)
By: John Madieu

Overview of this book

Linux kernel is a complex, portable, modular and widely used piece of software, running on around 80% of servers and embedded systems in more than half of devices throughout the World. Device drivers play a critical role in how well a Linux system performs. As Linux has turned out to be one of the most popular operating systems used, the interest in developing proprietary device drivers is also increasing steadily. This book will initially help you understand the basics of drivers as well as prepare for the long journey through the Linux Kernel. This book then covers drivers development based on various Linux subsystems such as memory management, PWM, RTC, IIO, IRQ management, and so on. The book also offers a practical approach on direct memory access and network device drivers. By the end of this book, you will be comfortable with the concept of device driver development and will be in a position to write any device driver from scratch using the latest kernel version (v4.13 at the time of writing this book).
Table of Contents (23 chapters)
close
close
Lock Free Chapter
1
Introduction to Kernel Development

I2C Client Drivers

The I2C bus, invented by Philips (now NXP) is a two-wire, Serial Data (SDA), Serial Clock (SCL) asynchronous serial bus. It is a multi-master bus, though multi-master mode is not widely used. Both SDA and SCL are open drain/open collector, meaning that each of these can drive its output low, but neither of them can drive its output high without having pull-up resistors. SCL is generated by the master in order to synchronize data transfer (carried by SDA) over the bus. Both slave and master can send data (not at the same time of course), thus making SDA a bidirectional line. That said, the SCL signal is also bidirectional, since the slave can stretch the clock by keeping the SCL line low. The bus is controlled by the master, which in our case is a part of the SoC. This bus is frequently used in embedded systems to connect serial EEPROM, RTC chips...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Linux Device Drivers Development
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon