-
Book Overview & Buying
-
Table Of Contents
Designing Machine Learning Systems with Python
By :
As a starting point, we use the idea of a logistic unit over the simplified model of a neuron. It consists of a set of inputs and outputs and an activation function. This activation function is essentially performing a calculation on the set of inputs, and subsequently giving an output. Here, we set the activation function to the sigmoid that we used for logistic regression in the previous chapter:

We have Two input units, x1 and x2 and a bias unit, x0, that is set to one. These are fed into a hypothesis function that uses the sigmoid logistic function and a weight vector, w, which parameterizes the hypothesis function. The feature vector, consisting of binary values, and the parameter vector for the preceding example consist of the following:

To see how we can get this to perform logical functions, let's give the model some weights. We can write this as a function of the sigmoid, g, and our weights. To get started, we are just going to choose some weights. We will learn shortly...
Change the font size
Change margin width
Change background colour