Book Image

Python Data Science Essentials - Second Edition

By : Luca Massaron, Alberto Boschetti
Book Image

Python Data Science Essentials - Second Edition

By: Luca Massaron, Alberto Boschetti

Overview of this book

Fully expanded and upgraded, the second edition of Python Data Science Essentials takes you through all you need to know to suceed in data science using Python. Get modern insight into the core of Python data, including the latest versions of Jupyter notebooks, NumPy, pandas and scikit-learn. Look beyond the fundamentals with beautiful data visualizations with Seaborn and ggplot, web development with Bottle, and even the new frontiers of deep learning with Theano and TensorFlow. Dive into building your essential Python 3.5 data science toolbox, using a single-source approach that will allow to to work with Python 2.7 as well. Get to grips fast with data munging and preprocessing, and all the techniques you need to load, analyse, and process your data. Finally, get a complete overview of principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users.
Table of Contents (13 chapters)
Python Data Science Essentials - Second Edition
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Preface

Testing and validating


After loading our data, preprocessing it, creating new useful features, checking for outliers and other inconsistent data points, and finally choosing the right metric, we are ready to apply a machine learning algorithm.

A machine learning algorithm, by observing a series of examples and pairing them with their outcome, is able to extract a series of rules that can be successfully generalized to new examples by correctly guessing their resulting outcome. Such is the supervised learning approach, where it applies a series of highly specialized learning algorithms that we expect can correctly predict (and generalize) on any new data.

But how can we correctly apply the learning process in order to achieve the best model for prediction to be generally used with similar yet new data?

In data science, there are some best practices to be followed that can assure you the best results in future generalization of your model to any new data. Let's explain the practice by proceeding...