Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Machine Learning Cookbook
  • Table Of Contents Toc
Python Machine Learning Cookbook

Python Machine Learning Cookbook

By : Prateek Joshi, Vahid Mirjalili
4.4 (5)
close
close
Python Machine Learning Cookbook

Python Machine Learning Cookbook

4.4 (5)
By: Prateek Joshi, Vahid Mirjalili

Overview of this book

Machine learning is becoming increasingly pervasive in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. With this book, you will learn how to perform various machine learning tasks in different environments. We’ll start by exploring a range of real-life scenarios where machine learning can be used, and look at various building blocks. Throughout the book, you’ll use a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms. You’ll discover how to deal with various types of data and explore the differences between machine learning paradigms such as supervised and unsupervised learning. We also cover a range of regression techniques, classification algorithms, predictive modeling, data visualization techniques, recommendation engines, and more with the help of real-world examples.
Table of Contents (14 chapters)
close
close
13
Index

Detecting corners


Corner detection is an important process in Computer Vision. It helps us identify the salient points in the image. This was one of the earliest feature extraction techniques that was used to develop image analysis systems.

How to do it…

  1. Create a new Python file, and import the following packages:

    import sys
    
    import cv2
    import numpy as np
  2. Load the input image. We will use box.png:

    # Load input image -- 'box.png'
    input_file = sys.argv[1]
    img = cv2.imread(input_file)
    cv2.imshow('Input image', img)
  3. Convert the image to grayscale and cast it to floating point values. We need the floating point values for the corner detector to work:

    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img_gray = np.float32(img_gray)
  4. Run the Harris corner detector function on the grayscale image. You can learn more about Harris corner detector at http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_features_harris/py_features_harris.html:

    # Harris corner detector 
    img_harris = cv2.cornerHarris...
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Python Machine Learning Cookbook
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon