Book Image

Python: Real-World Data Science

By : Fabrizio Romano, Dusty Phillips, Phuong Vo.T.H, Martin Czygan, Robert Layton, Sebastian Raschka
Book Image

Python: Real-World Data Science

By: Fabrizio Romano, Dusty Phillips, Phuong Vo.T.H, Martin Czygan, Robert Layton, Sebastian Raschka

Overview of this book

The Python: Real-World Data Science course will take you on a journey to become an efficient data science practitioner by thoroughly understanding the key concepts of Python. This learning path is divided into four modules and each module are a mini course in their own right, and as you complete each one, you’ll have gained key skills and be ready for the material in the next module. The course begins with getting your Python fundamentals nailed down. After getting familiar with Python core concepts, it’s time that you dive into the field of data science. In the second module, you'll learn how to perform data analysis using Python in a practical and example-driven way. The third module will teach you how to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis to more complex data types including text, images, and graphs. Machine learning and predictive analytics have become the most important approaches to uncover data gold mines. In the final module, we'll discuss the necessary details regarding machine learning concepts, offering intuitive yet informative explanations on how machine learning algorithms work, how to use them, and most importantly, how to avoid the common pitfalls.
Table of Contents (12 chapters)
Free Chapter
Table of Contents
Python: Real-World Data Science
Meet Your Course Guide
What's so cool about Data Science?
Course Structure
Course Journey
The Course Roadmap and Timeline

Chapter 6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning

In the previous chapters, you learned about the essential machine learning algorithms for classification and how to get our data into shape before we feed it into those algorithms. Now, it's time to learn about the best practices of building good machine learning models by fine-tuning the algorithms and evaluating the model's performance! In this chapter, we will learn how to:

  • Obtain unbiased estimates of a model's performance
  • Diagnose the common problems of machine learning algorithms
  • Fine-tune machine learning models
  • Evaluate predictive models using different performance metrics

Streamlining workflows with pipelines

When we applied different preprocessing techniques in the previous chapters, such as standardization for feature scaling in Chapter 4, Building Good Training Sets – Data Preprocessing, or principal component analysis for data compression in Chapter 5, Compressing Data...