Book Image

Deep Learning with Hadoop

By : Dipayan Dev
Book Image

Deep Learning with Hadoop

By: Dipayan Dev

Overview of this book

This book will teach you how to deploy large-scale dataset in deep neural networks with Hadoop for optimal performance. Starting with understanding what deep learning is, and what the various models associated with deep neural networks are, this book will then show you how to set up the Hadoop environment for deep learning. In this book, you will also learn how to overcome the challenges that you face while implementing distributed deep learning with large-scale unstructured datasets. The book will also show you how you can implement and parallelize the widely used deep learning models such as Deep Belief Networks, Convolutional Neural Networks, Recurrent Neural Networks, Restricted Boltzmann machines and autoencoder using the popular deep learning library Deeplearning4j. Get in-depth mathematical explanations and visual representations to help you understand the design and implementations of Recurrent Neural network and Denoising Autoencoders with Deeplearning4j. To give you a more practical perspective, the book will also teach you the implementation of large-scale video processing, image processing and natural language processing on Hadoop. By the end of this book, you will know how to deploy various deep neural networks in distributed systems using Hadoop.
Table of Contents (16 chapters)
Deep Learning with Hadoop
About the Author
About the Reviewers
Customer Feedback

Boltzmann machines

Boltzmann machines [122] are a network of symmetrically connected, neuron-like units, which are used for stochastic decisions on the given datasets. Initially, they were introduced to learn the probability distributions over binary vectors. Boltzmann machines possess a simple learning algorithm, which helps them to infer and reach interesting conclusions about input datasets containing binary vectors. The learning algorithm becomes very slow in networks with many layers of feature detectors; however, with one layer of feature detector at a time, learning can be much faster.

To solve a learning problem, Boltzmann machines consist of a set of binary data vectors, and update the weight on the respective connections so that the data vectors turn out to be good solutions for the optimization problem laid by the weights. The Boltzmann machine, to solve the learning problem, makes lots of small updates to these weights.

The Boltzmann machine over a d-dimensional binary vector can...