Book Image

scikit-learn Cookbook - Second Edition

By : Trent Hauck
Book Image

scikit-learn Cookbook - Second Edition

By: Trent Hauck

Overview of this book

Python is quickly becoming the go-to language for analysts and data scientists due to its simplicity and flexibility, and within the Python data space, scikit-learn is the unequivocal choice for machine learning. This book includes walk throughs and solutions to the common as well as the not-so-common problems in machine learning, and how scikit-learn can be leveraged to perform various machine learning tasks effectively. The second edition begins with taking you through recipes on evaluating the statistical properties of data and generates synthetic data for machine learning modelling. As you progress through the chapters, you will comes across recipes that will teach you to implement techniques like data pre-processing, linear regression, logistic regression, K-NN, Naïve Bayes, classification, decision trees, Ensembles and much more. Furthermore, you’ll learn to optimize your models with multi-class classification, cross validation, model evaluation and dive deeper in to implementing deep learning with scikit-learn. Along with covering the enhanced features on model section, API and new features like classifiers, regressors and estimators the book also contains recipes on evaluating and fine-tuning the performance of your model. By the end of this book, you will have explored plethora of features offered by scikit-learn for Python to solve any machine learning problem you come across.
Table of Contents (13 chapters)

Using sparsity to regularize models

The least absolute shrinkage and selection operator (LASSO) method is very similar to ridge regression and least angle regression (LARS). It's similar to ridge regression in the sense that we penalize our regression by an amount, and it's similar to LARS in that it can be used as a parameter selection, typically leading to a sparse vector of coefficients. Both LASSO and LARS get rid of a lot of the features of the dataset, which is something you might or might not want to do depending on the dataset and how you apply it. (Ridge regression, on the other hand, preserves all features, which allows you to model polynomial functions or complex functions with correlated features.)

Getting ready

...