Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Machine Learning with R
  • Table Of Contents Toc
Mastering Machine Learning with R

Mastering Machine Learning with R - Second Edition

By : Cory Lesmeister, Doug Ortiz , Vikram Dhillon, Miroslav Kopecky
2.8 (4)
close
close
Mastering Machine Learning with R

Mastering Machine Learning with R

2.8 (4)
By: Cory Lesmeister, Doug Ortiz , Vikram Dhillon, Miroslav Kopecky

Overview of this book

This book will teach you advanced techniques in machine learning with the latest code in R 3.3.2. You will delve into statistical learning theory and supervised learning; design efficient algorithms; learn about creating Recommendation Engines; use multi-class classification and deep learning; and more. You will explore, in depth, topics such as data mining, classification, clustering, regression, predictive modeling, anomaly detection, boosted trees with XGBOOST, and more. More than just knowing the outcome, you’ll understand how these concepts work and what they do. With a slow learning curve on topics such as neural networks, you will explore deep learning, and more. By the end of this book, you will be able to perform machine learning with R in the cloud using AWS in various scenarios with different datasets.
Table of Contents (17 chapters)
close
close
16
Sources

Business and data understanding


We are once again going to visit our wine data set that we used in Chapter 8, Cluster Analysis. If you recall, it consists of 13 numeric features and a response of three possible classes of wine. Our task is to predict those classes. I will include one interesting twist and that is to artificially increase the number of observations. The reasons are twofold. First, I want to fully demonstrate the resampling capabilities of the mlr package, and second, I wish to cover a synthetic sampling technique. We utilized upsampling in the prior section, so synthetic is in order.

Our first task is to load the package libraries and bring the data:

    > library(mlr)

    > library(ggplot2)

    > library(HDclassif)

    > library(DMwR)

    > library(reshape2)

    > library(corrplot)

    > data(wine)

    > table(wine$class)

     1  2  3 
    59 71 48

We have 178 observations, plus the response labels are numeric (1, 2 and 3). Let's more than double...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering Machine Learning with R
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon