Book Image

Mastering Machine Learning with R, Second Edition - Second Edition

Book Image

Mastering Machine Learning with R, Second Edition - Second Edition

Overview of this book

This book will teach you advanced techniques in machine learning with the latest code in R 3.3.2. You will delve into statistical learning theory and supervised learning; design efficient algorithms; learn about creating Recommendation Engines; use multi-class classification and deep learning; and more. You will explore, in depth, topics such as data mining, classification, clustering, regression, predictive modeling, anomaly detection, boosted trees with XGBOOST, and more. More than just knowing the outcome, you’ll understand how these concepts work and what they do. With a slow learning curve on topics such as neural networks, you will explore deep learning, and more. By the end of this book, you will be able to perform machine learning with R in the cloud using AWS in various scenarios with different datasets.
Table of Contents (23 chapters)
Title Page
Credits
About the Author
About the Reviewers
Packt Upsell
Customer Feedback
Preface
16
Sources

Chapter 5. More Classification Techniques - K-Nearest Neighbors and Support Vector Machines

"Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write."                                                                                                                        - H.G. Wells

In Chapter 3, Logistic Regression and Discriminant Analysis, we discussed using logistic regression to determine the probability that a predicted observation belongs to a categorical response what we refer to as a classification problem. Logistic regression was just the beginning of classification methods, with a number of techniques that we can use to improve our predictions.

In this chapter, we will delve into two nonlinear techniques: K-Nearest Neighbors (KNN) and Support Vector Machines (SVM). These techniques are more sophisticated than what we've discussed earlier because the assumptions on linearity can be relaxed, which means a linear combination of the...