Our first method of identifying missing values is to give us a better understanding of how to work with real-world data. Often, data can have missing values due to a variety of reasons, for example with survey data, some observations may not have been recorded. It is important for us to analyze our data, and get a sense of what the missing values are so we can decide how we want to handle missing values for our machine learning. To start, let's dive into a dataset that we will be interested in for the duration of this chapter, the Pima Indian Diabetes Prediction dataset.
-
Book Overview & Buying
-
Table Of Contents
-
Feedback & Rating
Feature Engineering Made Easy
By :
Feature Engineering Made Easy
By:
Overview of this book
Feature engineering is the most important step in creating powerful machine learning systems. This book will take you through the entire feature-engineering journey to make your machine learning much more systematic and effective.
You will start with understanding your data—often the success of your ML models depends on how you leverage different feature types, such as continuous, categorical, and more, You will learn when to include a feature, when to omit it, and why, all by understanding error analysis and the acceptability of your models. You will learn to convert a problem statement into useful new features. You will learn to deliver features driven by business needs as well as mathematical insights. You'll also learn how to use machine learning on your machines, automatically learning amazing features for your data.
By the end of the book, you will become proficient in Feature Selection, Feature Learning, and Feature Optimization.
Table of Contents (10 chapters)
Preface
Introduction to Feature Engineering
Feature Understanding – What's in My Dataset?
Feature Improvement - Cleaning Datasets
Feature Construction
Feature Selection
Feature Transformations
Feature Learning
Case Studies
Other Books You May Enjoy
Customer Reviews