Book Image

Python: End-to-end Data Analysis

By : Ivan Idris, Luiz Felipe Martins, Martin Czygan, Phuong Vo.T.H, Magnus Vilhelm Persson
Book Image

Python: End-to-end Data Analysis

By: Ivan Idris, Luiz Felipe Martins, Martin Czygan, Phuong Vo.T.H, Magnus Vilhelm Persson

Overview of this book

Data analysis is the process of applying logical and analytical reasoning to study each component of data present in the system. Python is a multi-domain, high-level, programming language that offers a range of tools and libraries suitable for all purposes, it has slowly evolved as one of the primary languages for data science. Have you ever imagined becoming an expert at effectively approaching data analysis problems, solving them, and extracting all of the available information from your data? If yes, look no further, this is the course you need! In this course, we will get you started with Python data analysis by introducing the basics of data analysis and supported Python libraries such as matplotlib, NumPy, and pandas. Create visualizations by choosing color maps, different shapes, sizes, and palettes then delve into statistical data analysis using distribution algorithms and correlations. You’ll then find your way around different data and numerical problems, get to grips with Spark and HDFS, and set up migration scripts for web mining. You’ll be able to quickly and accurately perform hands-on sorting, reduction, and subsequent analysis, and fully appreciate how data analysis methods can support business decision-making. Finally, you will delve into advanced techniques such as performing regression, quantifying cause and effect using Bayesian methods, and discovering how to use Python’s tools for supervised machine learning. The course provides you with highly practical content explaining data analysis with Python, from the following Packt books: 1. Getting Started with Python Data Analysis. 2. Python Data Analysis Cookbook. 3. Mastering Python Data Analysis. By the end of this course, you will have all the knowledge you need to analyze your data with varying complexity levels, and turn it into actionable insights.
Table of Contents (6 chapters)

What you need for this learning path

Module 1:

There are not too many requirements to get started. You will need a Python programming environment installed on your system. Under Linux and Mac OS X, Python is usually installed by default. Installation on Windows is supported by an excellent installer provided and maintained by the community.This book uses a recent Python 2, but many examples will work with Python 3as well.

The versions of the libraries used in this book are the following: NumPy 1.9.2,Pandas 0.16.2, matplotlib 1.4.3, tables 3.2.2, pymongo 3.0.3, redis 2.10.3, and scikit-learn 0.16.1. As these packages are all hosted on PyPI, the Python package index, they can be easily installed with pip. To install NumPy, you would write:

$ pip install numpy

If you are not using them already, we suggest you take a look at virtual environments for managing isolating Python environment on your computer.For Python 2, there are two packages of interest there: virtualenv and virtualenvwrapper. Since Python 3.3, there is a tool in the standard library called pyvenv (, which serves the same purpose.

Most libraries will have an attribute for the version, so if you already have a library installed, you can quickly check its version:



This works well for most libraries. A few, such as pymongo, use a different attribute(pymongo uses just version, without the underscores).While all the examples can be run interactively in a Python shell, we recommend using IPython. IPython started as a more versatile Python shell, but has since evolved into a powerful tool for exploration and sharing. We used IPython 4.0.0 withPython 2.7.10. IPython is a great way to work interactively with Python, be it in the terminal or in the browser.

Module 2:

First, you need a Python 3 distribution. I recommend the full Anaconda distribution as it comes with the majority of the software we need. I tested the code with Python 3.4 and the following packages:

• joblib 0.8.4

• IPython 3.2.1

• NetworkX 1.9.1

• NLTK 3.0.2

• Numexpr 2.3.1

• pandas 0.16.2

• SciPy 0.16.0

• seaborn 0.6.0

• sqlalchemy 0.9.9

• statsmodels 0.6.1

• matplotlib 1.5.0

• NumPy 1.10.1

• scikit-learn 0.17

• dautil0.0.1a29

For some recipes, you need to install extra software, but this is explained whenever the software is required.

Module 3:

All you need to follow through the examples in this book is a computer running any recent version of Python. While the examples use Python 3, they can easily be adapted to work with Python 2, with only minor changes. The packages used in the examples are NumPy, SciPy, matplotlib, Pandas, stats models, PyMC, Scikit-learn. Optionally, the packages basemap and cartopy are used to plot coordinate points on maps. The easiest way to obtain and maintain a Python environment that meets all the requirements of this book is to download a prepackaged Python distribution. In this book, we have checked all the code against Continuum Analytics' Anaconda Python distribution and Ubuntu XenialXerus (16.04) running Python 3.

To download the example data and code, an Internet connection is needed.